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Disclaimer 

This document was prepared as an account of work sponsored by an agency of the United 
States government. Neither the United States government nor Lawrence Livermore National 
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, process, 
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United States government or 
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States government or Lawrence 
Livermore National Security, LLC, and shall not be used for advertising or product endorsement 
purposes. 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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1. Executive Summary 

As supercomputing moves toward exascale, node architectures will change significantly.  CPU core 
counts on nodes will increase by an order of magnitude or more.  Heterogeneous architectures will 
become more commonplace, with GPUs or FPGAs providing additional computational power. 
 
Novel programming models may make better use of on-node parallelism in these new architectures 
than do current models.  In this paper we examine several of these novel models – UPC, CUDA, and 
OpenCL –to determine their suitability to LLNL scientific application codes. 
 
Our study consisted of several phases: 

 We conducted interviews with code teams and selected two codes to port. 

 We learned how to program in the new models and ported the codes. 

 We debugged and tuned the ported applications. 

 We measured results, and documented our findings. 
 
We conclude that UPC is a challenge for porting code, Berkeley UPC is not very robust, and UPC is not 
suitable as a general alternative to OpenMP for a number of reasons.  CUDA is well supported and 
robust but is a proprietary NVIDIA standard, while OpenCL is an open standard.  Both are well suited to a 
specific set of application problems that can be run on GPUs, but some problems are not suited to GPUs.  
Further study of the landscape of novel models is recommended. 
 

For readers who are: We recommend sections: 

Computation directorate management 2, 7, 9, 10 
Systems administrators and non-DEG LC staff 2, 7-10 
CAR/CASC researchers and managers 2-7, 9, 10 
Application development teams All 
Development environment group staff All 
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2. Introduction: Overview of This Study and Its Objectives 

2.1. Background 
It is widely expected that the computer systems anticipated in the 2015 – 2020 timeframe will be 
qualitatively different from current and past computer systems. They will be built using massive multi-
core processors with hundreds of cores per chip.  Their performance will be driven by parallelism, 
constrained by energy, and with all of their parts, they will be subject to frequent faults and failures. In 
this new generation of supercomputing, coined Exascale Computing, the number of nodes and the 
network will not dramatically change, but the system size and the node architecture are expected to 
shift radically. There will be multiple memory types, including programmable (scratchpad) memory 
along with generally more heterogeneous and hierarchical systems than today.  The memory to FLOPS 
ratio is expected to worsen.  
 
For exascale computing, the main programming environment challenges are expected to be within the 
new node rather than across nodes, since that is where the biggest changes will occur. The total number 
of nodes will not increase dramatically, so the current practice of using MPI between nodes to this scale 
provides one option of utilizing the exascale systems.  In this hybrid model, OpenMP, UPC, Co-Array 
Fortran, or GPU-centric models such as CUDA or OpenCL can be used to achieve intranode parallelism.  
Another option is to utilize unified programming models at the global level (UPC, Co-Array Fortran, 
Chapel, X10, etc.) 
 
The DOE has identified two ‘swim lanes’ for reaching exascale.  The swim lanes define different 
architectural approaches.  They are: 
 

a) using nodes with hundreds of CPU cores, and making use of these many cores; 
b) using nodes with GPU accelerators , and parallelizing applications by making use of these GPUs. 

 
The Anticipated Exascale Timeline is listed below: 

Year Anticipated Exascale Timeline 

2010-2011 develop abstract node/machine model 

2010-2012 initial programming models development 

2012-2013 early demonstration of programming models, generating course corrections 

2013-2015 continued programming models development 

2013-2015 application development in programming models 

2015 deployment on 100 petaflop systems 

2018 deployment on exaflop systems 

 
With the short time frame, i.e., deployment on 100 petaflop systems by 2015, there is insufficient time 
to develop new programming models from scratch. The current plan is to evolve and extend existing 
programming models.  

2.2. Need and Objectives 
This study was conducted in response to the need of application teams to determine how to make 
effective use of the future exascale environment at Livermore.  Making use of the forthcoming on-node 
parallelism will certainly require code modification and creative approaches, and may necessitate the 
adoption of new language paradigms.  We investigated several of these new models.  Our objectives 
were to determine: 
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a) the relative ease in acquiring the necessary programming skills; 
b) the relative ease in porting code; 
c) the robustness of the development environment and tools associated with the language model; 
d) the performance of applications coded with the new model. 

 
We selected UPC, CUDA, and OpenCL as the target language models for this study.  UPC is a language 
that can either be used as an alternative to OpenMP for on-node parallelism, or for both intra- and 
internode parallelism.  CUDA and OpenCL are language models for parallelizing code using GPUs .  GPUs 
are one possible means for achieving high levels of intranode parallelism and reaching exascale. 
 
In one portion of the study we compared the performance of an application ported to each of these 
target models against the same application parallelized with OpenMP.  OpenMP is a relatively well-
known and stable model for achieving intranode parallelism, so it provides a good baseline for 
comparison.  The code is an intranode-only program.  There is a routine which mimics an MPI data 
exchange within the code, so the target parallelism model is a hybrid one. 
 
We also ported a separate laboratory application just to UPC and measured its performance.  In this 
portion of the study we modeled the unified or holistic approach of using a single notation for both 
inter- and intra-node parallelism. 

2.3. Our Approach 
Before beginning, we selected the initial programming models to study based on resources, interest, 
and applicability.  The study consisted of several phases, broadly: 
 

 We began by conducting initial interviews with code teams to determine their needs and their 
understanding of the move toward exascale. 

 We then selected our target applications. 

 We learned how to program using the new models, learned the details of the target 
applications, and ported the code, documenting our findings along the way. 

 We measured performance, collected results, and looked for opportunities to improve 
performance. 

 We documented our findings. 
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3. Programming Paradigms Studied 

3.1. UPC Overview 
UPC, which stands for Unified Parallel C, is a parallel programming language that is an extension to the C 
language.  UPC is a PGAS (Partitioned Global Address Space) language.  This means that parallelism is 
achieved through the use of shared memory and work sharing across independent threads of execution. 

3.1.1. Shared Memory 
Shared memory variables in UPC form the foundation of UPC’s parallelism.  Rather than exchanging data 
across threads through explicit communication as in MPI, information is exchanged primarily through 
the use of shared memory. 
 
Shared memory variables are declared through the use of the shared qualifier.  In UPC, shared variables 
are always of global scope and must be declared globally; there is no provision for local shared variable 
declarations.  This limitation is discussed further in Section 6.1.2.   
 
If a shared variable is a scalar variable, it will be allocated by the first thread of a job (thread 0).  If it is a 
static array, it will be allocated according to a qualifier called the blocking factor.  If it is a dynamic 
shared array, it will be allocated according to the type of allocate call and the parameters passed.  There 
are three main forms of allocate call:   

 upc_alloc(), in which all memory is allocated on thread 0; 

 upc_all_alloc(), in which memory in an array is allocated in a round-robin fashion according to 
the blocking factor; and,  

 upc_global_alloc(), which is typically used to allocated multiple arrays with the same 
dimensions, one array per thread. 

 
The design of UPC allocations enables UPC to make appropriate use of NUMA memory layouts.  When a 
shared array variable is allocated using upc_all_alloc(), a chunk of that array then resides in local shared 
memory.  Assuming that the allocation and subsequent work sharing are done correctly, the thread will 
then spend the majority of its time accessing shared memory that is local to that CPU core.  Pathological 
NUMA memory access cases are avoided.  These pathological cases are ones in which most of a thread’s 
working set resides in the physical memory associated with a distant CPU, requiring additional traversals 
of NUMA pathways and increasing memory latency. 

3.1.2. Work Sharing 
Work sharing is done primarily through the use of the upc_forall construct.  This statement is used in 
place of the for statement on loops for which work sharing is to occur.  The upc_forall statement is of 
the form: 
 

upc_forall(expression1; expression2; expression3; affinity) 

 
The first three expressions are equivalent to those for a normal C for loop.  The affinity component  
indicates to a particular thread of execution which subset of the total loop iterations it should execute.  
In the simple case, if affinity is an integer expression, a thread will execute all iterations in which (affinity 
modulo number of threads) equates to the current thread number1.  The simple case of using the loop 
counter variable as the affinity expression usually results in best performance. 

                                                           
1
 El-Ghazawi, Tarek, et al.  UPC: Distributed Shared Memory Programming.  Wiley-Interscience.  P. 51. 
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3.1.3. UPC Threads and Network Layer 
The implementation of UPC threads is not restricted to actual intranode userspace threads, and the two 
are distinct concepts.  In the case of Berkeley UPC, UPC applications run on top of a layer called the 
GASNet (Global Address Space Network), and the GASNet determines the actual thread implementation.  
Possible GASNet layers include SMP (single node with pthreads), PSHM (process shared memory), MPI 
(in which the UPC shared memory is actually implemented via MPI calls), and various network APIs such 
as Infiniband verbs. 
 
The number of UPC threads2 is fixed at program startup, and does not change during the code’s 
execution.  This attribute of UPC makes it similar to MPI in that each process or thread is alive from 
inception through exit. 

3.2. OpenCL Overview 
OpenCL (Open Computing Language) is a parallel programming ecosystem intended for use with 
heterogeneous processing environments.  It is similar to the CUDA system, mentioned in the next 
section, in that it is able to target GPUs.  However, OpenCL is more general-purpose than CUDA, and 
may be used on any device that has a supported implementation.  Programs that utilize OpenCL consist 
of traditional code (C/C++), along with the OpenCL API, which enables the setup and control of 
execution kernels, which perform the computationally intensive work requiring parallelization.  Kernels 
are written in a subset of the C99 language, and are compiled to target a computing device.  Supported 
devices include (multicore) CPUs, GPUs, and accelerator devices such as the Cell BE.  In this manner, 
multiple types of computing resources may execute binaries built from the same kernel source and 
using the same setup/communication code. 

3.3. Cuda Overview 
CUDA, Compute Unified Device Architecture, is a programming model and instruction set architecture 
initially released in November 2006 by NVIDIA to allow for application developers to access GPUs 
(Graphical Processing Units) without having to use the graphics API.  CUDA comes with a software 
environment that supports C, along with Fortran, OpenCL, and DirectCompute.  Additionally, you can get 
compilers for PyCUDA (Python) and  JCUDA (Java-CUDA). 
 
The core concepts for CUDA revolve around three key abstractions: a hierarchy of thread groups (think 
tree structure), shared memories, and barrier synchronization. These abstractions are accessible to the 
programmer through a set of language constructs. The programmer must think about data parallelism 
and the effects of threading when considering how to partition his problem because, as seen in Figure 
3-1, data cannot be shared across blocks.  Blocks are normally assigned to separate Streaming 
Multiprocessors (SMs).  
 

                                                           
2
 The term thread in UPC refers to an independent execution of the code.  The underlying implementation of a UPC 

thread can be either a userspace thread or a process, depending on the underlying network layer. 
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3
Figure 3-1 Diagram of CUDA GPU Memory layout 

The overall methodology is heterogeneous computing with the CPU executing sequential portions while 
parallel operations are executed on the GPUs.  When programming in CUDA, you must think about 
where entities will reside or need to be accessible from – i.e., will this data/function reside solely on the 
host (CPU) or will it go/be accessible to the device (GPU), which memory of the device will it use (global, 
shared, private), and so on. Then, you must allocate the data, copy the data to the GPU, compute on the 
GPU, then copy the data back to the CPU, using appropriate CUDA directives.  The goal for optimized 
CUDA code is to copy the data as infrequently as possible and do as many computations on this data as 
possible once it is on the GPU. 

  

                                                           
3
VolumeI_CUDA_Intro.pdf, http://developer.nvidia.com/object/cuda_training.html, vg 21 

http://developer.nvidia.com/object/cuda_training.html
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4. Application Selection and Suitability 

4.1. Code Team Interviews 
We interviewed a number of code teams and learned about the characteristics of their codes to 
determine if they would be suitable for our study.  In addition to helping us better understand these 
codes and decide whether they should be included in the study, the interviews provided an opportunity 
for us to discuss exascale challenges in greater detail with some of the teams.  We recommend that we 
hold follow-up meetings with these teams to discuss our findings and discuss further the languages and 
tools that should be utilized in their preparatory plans for exascale. 
 
See Table 4-1 below for a description of these codes. 
 

Code 
Name 

Team 
Members 

Selected Code Name 

LEOS Burl Hall,  
Rob Neely,  
Tom 
Epperly, 
Dale Slone, 
Ellen Hill 

Yes The Livermore Equation of State (LEOS) Package  was our initial 
code of interest.  One of us (Evi) began working with LEOS prior to 
other team members joining the project. The Livermore Equation 
of State (LEOS) project generates and delivers equation of state data 

tables for use in LLNL hydrocode simulations. In 2006-2007, Tom 
Epperly explored the use of Global Arrays and a caching system4 
to reduce the memory footprint of this library. Since his work, the 
library has been rewritten. After discussion with team members, 
we decided it would be interesting to see how UPC, using the 
shared memory with affinity approach, would handle the large 
coefficient array prevalent  in LEOS and a concern to multi-physics 
code teams as new computer architectures come to LLNL.  We 
want to see if we can use UPC’s shared concept to spread this 
coefficient array across threads/processors efficiently versus 
having the entire coefficient on every processor. To control the 
scope, we further decided to look at the Livermore interpolate 
Package, (LIP), and focus on the calculation of the coefficient 
array within this library since it is now a stand-alone package. 
 

CP2K Will Kuo No CP2K is an F95 code to perform molecular and atomistic 
simulations of substances in different phase states5.  The code has 
components for traditonal molecular dynamics, density 
functionals, and Kim-Gordon models.  Because no version of the 
code and no kernels are written in C, we deemed it an unsuitable 
candidate for this study.  Will suggested that we meet instead 
with the Cheetah team, and that the kinetics and thermo routines 
within Cheetah would be of interest. 
 

Cheetah Larry Fried, 
Peter 

No Cheetah is a widely used thermo-chemical code written in C.  We 
met with Larry, Soren Bastia, Will Kuo, and Peter Vitello to discuss 

                                                           
4
 Scalable Equation of State Capability, Tom Epperly, Fred Fritsch, Peter Norquist, and Lawrence Sanford, 

November 2007 
5
 http://cp2k.berlios.de/ 
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Code 
Name 

Team 
Members 

Selected Code Name 

Vitello, 
Soren 
Bastia, Will 
Kuo 

the possibility of using Cheetah as the basis of our study.  Because 
the code is a collection of routines, and these routines must be 
called from outside Cheetah, we needed a ‘standard’ caller case 
for the purposes of our study.  The team did have a wrapper case 
that they were able to provide to us.  Due to the complexity of the 
code and other issues, we opted not to study Cheetah. 
 

Hypre Rob Falgout No Hypre is part of the scalable linear solvers project at LLNL.  It is ‘a 
library of high performance preconditioners that features parallel 
multigrid methods for both structured and unstructured grid 
problems.’6.  It is a sparse matrix code written in C.  In our 
meeting with Rob, he suggested that if we were to select Hypre, 
we focus on the AMG2006 (Algebraic Multigrid) solver.  That 
solver is the benchmark for an LDRD project being worked on by 
Allison Baker, Martin Schulz, and Bronis deSupinski .  It examines 
OpenMP performance when used in conjunction with a memory 
affinity patch written by that team. 
 

PF3D Bert Still No PF3D is a key code in use in the National Ignition Facility.  PF3D is 
written in C and is used to model the behavior of the laser light 
inside the target chamber of NIF.  A laser-plasma interaction 
effect makes PF3D simulations critical to NIF’s success.  As the 
wavelength and energy of laser light increase inside the chamber, 
and as the light is reflected off of the hohlraum , a natural process 
called Raman scattering inhibits measurement.  This increases the 
need for accurate simulation with PF3D prior to conducting high-
energy experiments. 
 
PF3D is highly scalable and there is a great demand for 
computational cycles to run simulations.  The most important 
kernels in PF3D are contained in eight light wave solvers that look 
similar to each other.  The vast majority of the code’s time will be 
spent in these solvers for problems of interest.  All data is stored 
in 1d heaps, and the code uses a regular Cartesian mesh. 
 
The PF3D kernels are relatively compact and the code builds fairly 
quickly.  A complicating factor is that the code is run under Yorick, 
which is an interpreter also written in C. 
 
I (Charles) had initially begun working on PF3D, but switched to 
CLOMP  in early June once we determined that CLOMP was better 
suited to an initial investigation.  PF3D is a marquee application 
and contains critical loops that are well suited to work sharing.  
However, it is a much larger code than CLOMP.  Parallelizing it 

                                                           
6
 https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html 



Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 12  October 12, 2010 
 

Code 
Name 

Team 
Members 

Selected Code Name 

with UPC would involve examining and likely modifying all 
functions in all code files.  Yorick might also require modification.  
The PF3D code is currently parallelized with MPI and this adds 
complexity. 
 

BLAST / 
blast+ 

Tom Slezak No In our meeting with Tom, we discussed the future needs of 
biocomputing applications like BLAST.  Tom noted that the 
primary algorithm for biocomputing involves repeated hash table 
lookups – looking for a particular DNA sequence within the larger 
genome.  This is a memory-intensive operation.  A large amount 
of physical memory is needed to store the full genome that is 
used in the lookup. 
 
Many of the current LLNL supercomputers are not well suited to 
the sorts of scientific problems that Tom’s team is solving because 
there is not enough memory available.  The team has purchased a 
special SGI Altix machine that has half a terabyte of memory.  This 
system, along with FPGA-based systems that are specially 
designed for solving the pattern-matching problem, are where 
computing is headed for bio.  Pacific Biosciences will soon be 
charging very little to do sequencing.  The reduction in cost is so 
significant that it changes the nature of the problem in bio, and 
analysis of results, rather than sequencing, becomes the major 
bottleneck.   
 
Tom is concerned that the future of generalized supercomputing, 
in which there is an abundance of CPU cores on nodes but no 
significant shift in memory per core, or even a reduction, is not 
the direction that biocomputing needs in order to solve next-
generation problems.  An example of a next generation bio 
problem is metagenomic sequencing, in which all of the DNA from 
a soil sample is analyzed to determine its origin and is compared 
against multiple genomes.  The metagenomic problem will 
require 1 to 2 TB of RAM.  Tom envisioned a metaphorical 
solution that had a biological appearance.  In his solution there is 
a very large sphere of memory which contains the problem, and 
then compute engines ‘walk’ the surface of the problem sphere. 
 
While the global memory addressability of UPC might be 
theoretically useful for biocomputation, latency to memory is the 
ultimate limiting factor for applications like BLAST, and addressing 
off-node memory causes such a major performance reduction 
that the application is effectively unusable.  Since only one task 
will be running per node in order to provide the maximum 
amount of addressable memory, there is little opportunity for 
task- or thread-level parallelism.  Cross-node parallelism is 



Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 13  October 12, 2010 
 

Code 
Name 

Team 
Members 

Selected Code Name 

embarrassingly parallel. 
 

CLOMP John 
Gyllenhaal 

Yes C Livermore OpenMP benchmark.  CLOMP is a benchmark code 
that mimics a key laboratory code.  John Gyllenhaal and Greg 
Bronevetsky developed the CLOMP code to measure OpenMP 
overhead.  The code is relatively small, is highly configurable via 
run-time parameters, and is ideal for modeling overheads 
associated with thread parallelism.  In its unmodified form, the 
innermost loop in the code walks through members of a linked 
list.  There are cross-iteration dependencies in the innermost 
loop, so thread parallelism is attained by work sharing of an outer 
loop that iterates over multiple linked lists which are independent 
of one another. 
 

Table 4-1 Candidate code descriptions. 

4.2. Selection Process 
We decided which codes to study based on several factors: 
 

 Either a key LLNL code or representative of key laboratory codes; 

 Ease of build; 

 Version already in existence with OpenMP directives to enable performance comparisons with 
OpenMP cases; 

 Code has elements that we anticipated would ‘push’ or stress the language models tested; 

 Code was compact enough to be ported to target language model in limited amount of time. 
 
For these reasons, we selected the CLOMP code for our combined UPC, CUDA, and OpenCL porting 
effort. 
 
LEOS was selected to represent a first physics porting effort based on some of these factors and also 
because it explored the use of UPC for the unified model of parallelism, as opposed to the hybrid model. 
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5. Learning the New Paradigms:  Effort and Lessons 

We hosted several activities to help us move forward in learning about exascale programming models: 

 Lawrence Berkeley National Laboratory is where a large part of UPC is currently developed. We 
contacted Paul Hargrove, one of the lead developers, and arranged a visit. We met Filip 
Blagojevic , another developer who specialized in application codes. We learned more about 
UPC, and how UPC shared memory works.  We heard how this effort is truly on a shoe string 
budget, and works with a minimalist approach.  We discussed some of our concerns about 
needing to move shared variables to the top of the code, and heard that although these are real 
issues, there is little room for changes to the standard at this time. We learned there are local 
versions of UPC (i.e., the Berkeley version) that have features that get around some of the 
limitations to UPC.  However, these features are not portable. We also learned that the MPI-UPC 
collaboration was done without help from LBL.  Finally, Charles showed his coding issues, and 
Paul and Filip worked through some of the bugs.  We then got his code to compile, learning in 
the process about UPC. Because of this connection, we now have a conduit into the UPC system 
that can get us answers to some of our questions. 

 To learn more about what others at LLNL are doing concerning GPU programming and CUDA in 
particular, we hosted a meeting with a group of scientists and computer scientists doing CUDA 
work. These folks included Jon Cohen, John Gyllenhaal, Lee Nau, Charles Shererda, Evi Dube, 
David Richards, Jim Glosli, Tod Gamlin, Lukasz, and Manaschai Kunaseth.  Jon Cohen gave a talk 
on the speedup he has made going from OpenGL to CUDA –which was quite impressive.  It did 
seem that the projects were GPU specific.  David Richards had two summer students (Lukasz 
and Manaschai) working with the same physics module, converting it to OpenMP and CUDA. 
Luskasz has good experience in CUDA, and he described his current project as his toughest to-
date.  He had similar issues similar to ours in porting, including handling pointers.  Our plan is to 
stay connected via a majordomo list and the SharePoint  site 
 

We set up a SharePoint Site which allows us to maintain a place for documents and communication to 
team and outside groups.  When Charles started working on the project, this site proved useful in having 
a handy place for him to locate all of Evi’s detailed journals. Her research and journals helped him 
understand some of the pitfalls and challenges of UPC before he encountered them on his own, and 
reduced the time he spent looking for relevant information.  The summer students have used this site to 
archive their information. 

5.1. UPC 
Both Evi and Charles came onto this project with a background in parallel and C programming but no 
prior experience with UPC.  This gave us the opportunity to determine the relative difficulty of learning 
UPC, and what challenges a first-time UPC programmer faces.   
 
We both  began learning UPC by reading the book “UPC: Distributed Shared Memory Programming” by 
Tarek El-Ghazawi, William Carlson, Thomas Sterling  and Katherine Yelick .  It becomes apparent in 
learning UPC that there is not a vendor backing this language or a large number of people to support an 
infrastructure.  Sources include the one book, written a few years ago, examples on the web from a few 
sources (all academic), a handful of PowerPoint presentations from the Supercomputing Conference 
from a number of years ago, and a handful of research papers, again all academic. In Appendix C, you 
can find more about these sources.  
 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Tarek%20%20El-Ghazawi
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Thomas%20Sterling
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Katherine%20%20Yelick
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Concurrently, we each built and installed the Berkeley UPC compiler and translator and different 
GASNets so as to increase our understanding of the Berkeley implementation.  Documentation for the 
build and install process, and for using the compiler and translator, is limited to READMEs and help text.   
A cautionary note: When building, it’s necessary to verify you have successfully linked the compiler with 
the translator.  Otherwise, your programs will be shipped unannounced to Berkeley to be translated - an 
undocumented feature.  When determining the compiler variations, there are many types of GASNet 
options, and you must peruse the README files to decide which version you want to build.  Additionally, 
you must figure out what the difference is between the versions and why you would want to chose one 
over the other. To-date, we cannot say why one is better than the other, and we have not run enough 
tests to understand the differences. 
 
Once we had a working compiler and translator, we began to write and build simple UPC applications.  It 
was only at this point that we really began to understand the UPC paradigm – that all UPC threads 
execute all program code and that the upc_forall construct splits the original loop into subsets of 
iterations that are executed by individual threads.  This was also the point at which we gained familiarity 
with the runtime system and the memory management for UPC. Occasionally, there were errors in the 
book and  PowerPoint slides, so patience and problem solving were in order, along with confidence in 
your ability to debug with printf statements, since debuggers supporting UPC do not presently exist.  
When actually writing programs, there are limited existing codes out there.  We did use the websites 
from Michigan Tech University for examples.  
 
Perhaps the most difficult aspect of UPC to learn is the UPC shared memory model. It is hard to figure 
out what is really happening shared memory-wise. Since there is no debugger, you have no way of 
knowing what is happening in memory apart from using printf. 

5.2. OpenCL 
There is a wealth of resources available for getting up to speed on OpenCL.   Materials exist from the 
major vendors supporting the standard (NVIDIA, AMD, Apple), as well as from academic institutions.  
While not contained in one central location as with the CUDA resources, they are fairly easily located.  
Having previous experience with CUDA is definitely helpful, although not required for learning to use 
OpenCL.  Learning from several sources was helpful in that resources were stronger in some areas than 
others, so they nicely complemented each other.   In Appendix C is a list of resources used and their 
various strengths and weaknesses.   
 
No one resource is the be-all and end-all of learning OpenCL.  Some are tailored to more specific 
audiences and go into varying levels of detail.  Also, different platforms may not behave identically.  
Code that compiled and generated no errors on the Apple implementation included with OS X 10.6 
(Snow Leopard) did not function properly when run using the NVIDIA implementation.  Thus, it is 
important to have thorough error checking and reporting code, since assumptions made for one 
platform may not hold on another.  It is also helpful to run code on different platforms, to compare and 
contrast implementation differences, and to locate non-portable code. 

5.3. Cuda 
CUDA has been in existence longer than OpenCL, and is supported by a single vendor, NVIDIA, so the 
system has had time to mature.  The learning resources available are thorough and robust.  The CUDA 
developer web site is well maintained and contains useful examples and documentation.  Some 
examples are partially coded already, and only requiring filling in specific parts to get started.  These 
progress from easy to more challenging examples and so guide the learner as his skill increases. 
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There are some challenges in getting code to work in an HPC environment where jobs must be 
submitted to a queue, such as edgelet at LLNL.  Most of the learning examples assume a user has a 
single workstation personally available to him, and that code will be run locally.  Working in an HPC 
environment generally has two differences:  loading the cuda module into the working environment, 
and submitting jobs to a queue to be executed.   
 
Although CUDA is relatively stable, at least in comparison to OpenCL, it should be noted that there are 
new releases usually two to three times a year.  In fact, the same week as authoring this, the newest 
release candidate 3.2 was announced.  While this release schedule is not overly frequent, it is more 
frequent than some other more established software.   
 
The concept of CUDA programming is similar to vector programming, with the addition of moving data 
to and from a GPU device before and after computation.  In order to amortize these data transfer 
penalties, computation kernels which are intensive are desirable from a performance perspective. 
 
The lack of pointer support for older hardware is an annoyance, and the CLOMP port was not able to 
utilize them, as the newest hardware did not arrive at LLNL until late in the summer.  More generally, 
and perhaps more challenging than the frequency of software releases, is the rate of hardware releases, 
each of which brings performance and usability features, but also requires retuning and enhancement of 
existing codes.   
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6. Code conversion: Effort and Lessons 

In porting any code, the first task is to have a firm grasp of what the code does and how it does it.  A 
portion of the porting effort for our team was devoted to understanding the codes that we were 
porting.  Presumably the time that we spent on this establishes an upper bound; we expect that the 
typical application developer will be more knowledgeable and familiar with the code that he is porting 
than we were initially with the codes we studied. 
 
We believe, however, that there is a ‘sweet spot’ of code familiarity.  If a developer is overly familiar 
with his code and has not changed it significantly in a long while, he runs the risk of becoming mentally 
invested in the existing code design.  This can create barriers to forming creative solutions in code when 
new challenges such as exascale arise.  The new language models will certainly require creative thinking 
on the part of application developers.  More importantly, whatever the language model, the 
forthcoming hardware architectures and the massive increase in scale make creative approaches to 
problem solving an absolute requirement.   
 
One recommendation we make independent of this study is for code teams to hold architecting 
brainstorms in which they consider how they would go about solving some of their key problems given 
scale and target architecture design, while ignoring the existing code base.  This effort could also ignore 
programming language models and specific parallelism solutions, to the extent this is possible. 
 
An outcome of a series of such brainstorms might answer the question: 
 

Given a particular scientific problem of interest, and an architecture of either GPU-based or 
many-core-based systems at a particular scale, what would a code look like that solved this 
problem and took maximal advantage of the architecture and scale? 

 
Certain assumptions could be made to enhance the usefulness of the design, such as, the code must mix 
two modes of parallelism, one to take advantage of on-node parallelism and one such as MPI to take 
advantage of off-node parallelism. 
 
Once this high-level design is complete, code teams could then compare it to the existing code base and 
see where overlaps and gaps existed.  In some cases, large portions of code may need to be 
rearchitected to make full use of exascale.  By holding these sessions early, however, the team can 
identify what the code architecture should be, jump-start the creativity process, and solve whole new 
domains of problems. 
 
A further recommendation is that teams be reconfigured slightly to introduce fresh ideas and assist with 
the creative process.  We recommend soliciting volunteers or ‘exchange developers’ to shift across code 
teams so that at least one new person and sometimes two new people change teams in order to 
participate in the design effort.  These exchange developers should be staff who are ready to offer their 
perspective in spite of a lack of familiarity with the new code. 
 
In this study, we focused our efforts on codes without MPI parallelism.  All of our porting efforts either 
replaced existing parallelism or parallelized a non-parallel code.  With only a single mode of parallelism 
in our codes, the study was strictly an examination of these novel forms of parallelism.  We have not yet 
examined the effort involved in mixing these parallelism modes. 
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Mixing modes will introduce additional programming complexity.  It will also create the potential for 
new forms of race condition and deadlock.  There may also be special challenges associated with the 
network layer, especially if the network layer is shared across parallelism modes.  We strongly 
recommend that the network layer not be shared.  See Section 6.1.2 for further discussion. 

6.1. CLOMP - UPC 

6.1.1. Effort Required 
The effort  to convert CLOMP from OpenMP to UPC and get the code into a working state is detailed 
below in Table 6-1.  Note that our initial meeting to discuss CLOMP was on June 4, and I (Charles) 
worked approximately half time at LLNL on this effort.   Task durations are approximate and do not 
reflect the fact that the porting effort was a more integrated and iterative process than what this table 
would suggest. 
 

Task Approx. 
Duration 

Notes 

Familiarization with code (includes initial 
meetings with code author, sketching out a call 
tree and data usage chart to assist with 
comprehension, test runs, and experimentation 
to understand the properties of the code under 
different runtime scenarios.) 

4 days This figure will vary widely by programmer.  
I (Charles) was slow initially as I regained 
familiarity with HPC applications.  For 
many this figure would be lower for the 
CLOMP code, and for some, higher.  This 
code was relatively small.  For a large 
parallel application, a very significant 
amount of time – months – could be spent 
learning the code, what the various 
components do, the build system, how to 
make effective use of it for different types 
of problems, and where the majority of 
time is spent for different types of 
problems. 
 

Identification and removal of OpenMP pragmas 
and function calls7 

4 hours The actual time to do the removal in this 
code is trivial.  More time was spent 
understanding what the various parallel 
code components were doing, such as 
identifying specific variables that were 
shared or private, and loops that were 
parallelized and would be parallelized 
under UPC.  
 

Removal of extraneous OpenMP functions8 1 day Some of this time was spent in 

                                                           
7
 To eliminate compiler warning messages, all OpenMP pragmas were removed.  OpenMP function calls such as 

omp_get_num_threads() and omp_get_thread_num() were removed and replaced with the relevant references to 
UPC constants such as THREADS and MYTHREAD. 
8
 The original CLOMP code contains OpenMP best case, static, dynamic, and manual parallel loops.  It does not 

make sense to mix OpenMP and UPC in the same code, since both are threading paradigms, and in the case of 
UPC, all threads are alive for the duration of the code.  Additionally, UPC inserts additional code for all shared 
memory variable references, so that code performance can be perturbed from the standard C case even if the 
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Task Approx. 
Duration 

Notes 

understanding what these routines were 
doing and whether there was any 
opportunity to preserve them or create 
similar routines using UPC. 
 

Identification of variables to convert to shared 
memory variables 

2 hours Time spent identifying variables was minor.  
Note that if more time had been spent 
looking at this exhaustively, it might have 
saved later debugging time.  
 

Conversion of variables to shared memory 
variables.  Movement of any local variables that 
must be shared to global declaration section 
 

2 days Conversion of variables from standard 
variable types to UPC shared memory 
variables was conceptually challenging in 
several cases.   
 

Proper allocation of shared memory variables 4 hours While the amount of code to do this is 
trivial, it was necessary to carefully 
consider what form of UPC allocate calls 
should be used for each dynamic shared 
variable.  
 
 

Conversion of for loops that must be parallelized 
to upc_forall loops 

4 hours Parallelization of for loops was not a simple 
one-to-one correspondence with prior 
OpenMP parallelization.  Each loop was 
examined. 
 

Serialization of all parts of code that must be 
performed in serial  

3 days It was not possible to simply serialize 
(conditionally execute if MYTHREAD = 0) all 
portions of the code that were run from a 
single-threaded region in the OpenMP 
case.  This is because private variables 
must be initialized for all threads, not just 
for thread 0.  This made serialization one 
of the more challenging tasks - updates to 
shared variables had to be either serialized 
or operated on with a upc_forall loop, but 
updates to private variables had to be 
executed independently by all threads. 
 

Debugging of basic compilation problems 2 hours Minor amount of time. 
 

Debugging of runtime issues:   

                                                                                                                                                                                           
code is run in a serialized region.  For these reasons, comparisons between OpenMP and UPC runs of the CLOMP 
code must be with different executables rather than different timed test cases within the same binary. 



Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 20  October 12, 2010 
 

Task Approx. 
Duration 

Notes 

Serial code issues such as: 
    segmentation violations; 
    incorrect results obtained in serial case; 
    failure to run to completion in serial case 

3 days There were a number of serial code issues, 
but the one that consumed the most time 
was incorrect results caused by a failure to 
advance a pointer. 
 

Parallel code issues such as: 
    segmentation violations; 
    incorrect results obtained in parallel case; 
    failure to run to completion in parallel case 

13 days Parallel run bugs and race conditions were 
caused primarily by the following issues: 

 Portions of code were serialized 
that should have been parallelized; 

 Portions of code were parallelized 
that should have been serialized; 

 Private variables should have been 
declared as shared, and vice versa; 

 Missing barriers where barriers 
were needed; 

 Wayward barriers in serial sections 
of code. 

 
Performance analysis and tuning 3 days Most effort was spent in analysis of C code 

generated by translator. 
 

Total 31 days  
Table 6-1 Work breakdown, UPC learning and code conversion effort, CLOMP. 

 

6.1.2. Overall Lessons 
The lessons that I (Charles) learned from porting CLOMP to UPC are: 

 UPC basics are easy to learn; 

 Pointer arithmetic causes code insertion; 

 It is challenging to fully conceptualize complex data layouts as shared types; 

 Shared variables always have global scope; 

 Porting code that is already threaded is nontrivial; and 

 Mixing MPI and UPC will be very challenging. 
 
These are explained further below, along with their implications. 
 
UPC Basics Are Easy to Learn 
It is fairly easy to acquire the basics of UPC.  Unlike MPI, there is not a large library of function calls to 
learn.  However, understanding the idiosyncrasies of UPC, especially allocation and manipulation of 
shared variables, takes practice and skill. 
 
Pointer Arithmetic Causes Code Insertion 
UPC lends itself well to computational problems that can be modeled using a single global address 
space.  In the case of the CLOMP code, each thread operates on a group of linked lists that are 
independent of each other.  This is not the most advantageous case for UPC because there is a fairly 
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high performance penalty for doing pointer arithmetic in UPC: the UPC translator inserts two function 
calls for every pointer dereference and modification.  Those functions are inlined but each calls other 
functions that interact with the underlying GASNet layer.  This results in a significant amount of total 
code inserted.  See Appendix A for an example of the code that is inserted by the UPC translator. 
 
It Is Challenging to Fully Conceptualize Complex Data Layouts as Shared Types 
The layout of an important data component in the CLOMP code is implemented as a pointer to a pointer 
to a data structure.  Mimicking this layout in UPC required the use of a shared pointer to a shared 
pointer to a shared data structure.  This was a confusing layout and was the source of several bugs.  I 
(Charles) spent a good deal of time considering the full implications of this layout.  I mapped this out 
several times and had to put numerous printf’s in the code to debug some problems with it.  The first 
layout that I devised was also the final one that I used; however, in between this first and final stage I 
tried a number of alternate layouts while debugging.  I was uncertain whether my original layout would 
work as I expected it to.  The original layout was acceptable, and the bugs had different causes.  In this 
case I spent time trying alternate approaches because of uncertainty about the language, rather than 
spending time looking for bugs in my code.  This pattern was reinforced by some uncertainty on the part 
of the Berkeley UPC team about whether my data layout was acceptable.  Better documentation and a 
more robust product would have enhanced my confidence that my coding approach was a legitimate 
one. 
 
Shared Variables Always Have Global Scope 
Shared variables are always global in UPC.  They are declared at the beginning of a program.  This is an 
impediment to porting a large code to UPC.  It will require programmers to forgo modularity in their 
code design for any variables that reside in shared memory. 
 
Porting Code That is Already Threaded is Nontrivial 
Because all threads are alive from beginning of program, it is nontrivial to port code that is already 
threaded.  Every piece of the code must be examined to determine if it should only be executed by 
thread 0, or if it should be executed in parallel.  Because of the way shared variables are allocated and 
the need to populate private variables for each thread, there is not a one-to-one correspondence 
between serial versions of the code using a typical threading model and serial versions of the code in 
UPC.  Wherever shared variables are used, there is the potential to overwrite those shared variables 
with multiple threads.  Wherever private data is modified, there is the possibility that all threads must 
make those same modifications, depending on how that data is used. 
 
Mixing MPI and UPC Will Be Very Challenging 
Porting existing MPI applications to a mixed MPI/UPC model will be especially tricky.  All UPC threads 
and all MPI tasks are simultaneously alive throughout the life of the program.  If we assume a model in 
which UPC threads are used on-node and MPI across nodes, and an on-node form of GASNet such as 
PSHM (Process Shared Memory) or SMP (pthreads) is used by UPC, the two models will not be in 
contention for the same network layer.  This eliminates some complexity. 
 
However, all MPI communication must be performed only by UPC thread 0.  UPC thread 0 must also 
have a consistent view of all threads’ memory at the point when it attempts to access shared memory.  
The easiest way to implement this is through the use of UPC barrier calls.  If UPC will be used in 
conjunction with MPI on production LLNL application codes, we recommend that LC develop a 
programming standard and tutorial for mixing the two models.  Application programmers will learn how 
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to mix the two models in a consistent way, and LC staff will develop their expertise as they create the 
standard. 

6.1.3. Debugging 
Debugging the UPC version of the CLOMP code was a very slow process, primarily because the only 
debugging tool available for current versions of UPC is the printf statement. 
 
One of us (Charles) spent several days investigating the potential of using TotalView with alternate 
versions of UPC, GASNet layer, and debugger.  TotalView had been supported with earlier versions of 
Berkeley UPC and TotalView, but was not officially supported in more current releases of either.  While 
it was possible to launch UPC codes under TotalView and insert breakpoints, the breakpoints were 
ignored, and it was not possible to halt program execution.  In discussions with the Berkeley UPC team, 
we learned that they were not surprised to hear of the problem, were uncertain whether TotalView 
would work, and had not tried using TotalView themselves with current releases of either TotalView or 
UPC.  We discussed the possibility of getting Berkeley UPC supported in a current TotalView release with 
our on-site TotalView expert, Matt Wolfe.  It seemed likely that the amount of time that it would take to 
add UPC support would exceed the amount of time needed to debug CLOMP even if we categorized the 
issue as urgent.  We agreed to make the issue of UPC support a medium-priority issue. 
 
I (Charles) made the decision at this point to move forward with more primitive debugging methods as 
opposed to installing old versions of Totalview and UPC in an effort to get a working debugger.  In 
hindsight it may have taken less time to install these old versions and get TotalView working than it did 
to debug using printf statements.  Debugging the parallel version of the code took the most time of any 
single task by far. 
 
A working debugger will be necessary in a production environment. 

6.2. CLOMP - OpenCL 

6.2.1. Effort Required 
Familiarity with the CLOMP codebase had to be first attained before taking any other steps.  
Understanding the nuances and program design decisions was crucial for later steps involved with 
porting.  Beginning with simple OpenCL examples was useful also, since a basic understanding was 
requisite for any code porting.  After that, identifying the portions of CLOMP that had to change, and 
those that did not, was a key step, since it was desirable to modify the existing codebase only as much 
as absolutely necessary.  The lack of pointer support in OpenCL required a restructuring of the main data 
types used (linked lists) into linear arrays suitable for memory copies to/from an OpenCL device.  Also, 
since the CLOMP algorithm is essentially a two-step process, one emulating an MPI call, it was necessary 
to transfer data to the compute device and back at each iteration, which required some thought as to 
how best structure the transfer code.   
 
We estimate that Lee, who worked on the OpenCL to CLOMP port, spent approximately 35 days of effort 
on learning OpenCL and on the port. 

6.2.2. Overall Lessons 
Starting with simple examples and working up to the CLOMP port was a straightforward process.  
However, some unexpected snags were hit along the way.  It is crucial to completely understand an 
algorithm and its data dependencies before attempting to port it to OpenCL, which has a fairly restricted 
processing model.  For instance, CLOMP depends on performing double-precision floating-point 
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operations, which are only supported by a subset of compute devices, and must be enabled using an 
extension to the API.  The lack of pointers presented an interesting challenge, and required more effort 
than probably any other aspect of the port.   

6.2.3. Debugging 
Debugging is a very challenging aspect of writing OpenCL applications.  A first key step is to provide as 
much error checking and reporting code as possible, to catch problems that might not otherwise be 
obvious.  Beyond this, there is not really much debugging support.  Even printf is only supported as an 
extension on some platforms and devices.  Reading forums of people who had similar issues was helpful, 
but ultimately a very careful visual inspection of kernel code is the best debugging tool available 
currently. 

6.3. CLOMP - Cuda 

6.3.1. Effort Required 
When we first applied CUDA to CLOMP, it did not have pointers or recursion, so the linked list in CLOMP 
had to be converted to an array. Additionally, the mindset for CUDA is different from that of the 
traditional MPI/OpenMP programming paradigm and it takes a while to get in the right frame of 
reference, i.e. traverse through the linked list and do work on each piece of data versus bundle up your 
data, ship it off to the GPU, do work, then ship it back.  We did not ever quite get there with the CUDA 
conversion of CLOMP.  As is always the case, it is easier to start with a fresh, clean piece of paper than to 
try to shoehorn an existing algorithm into a new programming paradigm.  
 
We estimate that our summer student, Lance Harris, who worked on the CUDA to CLOMP port spent 
between 25 and 30 days of effort on learning CUDA and on the port. 

6.3.2. Overall Lessons 
This exercise had some positives and some negatives. We immersed ourselves in the language and 
learned by doing a real problem in which we had answers. We could compare results between different 
programming models and contrast different styles, and in talking to others doing CUDA, we ran into 
similar issues with the language which validated our positive experiences and challenges with converting 
our real problem. 

6.3.3. Debugging 
There are several options for debugging with CUDA. CUDA toolkit ships with CUDA.gdb debugger, and a 
profiler, along with the documentation to figure out how to run the debugger.  Additionally, NVIDIA has 
set up their infrastructure to allow for others to easily build tools.  Totalview has come out with a beta 
version for CUDA, and Alliana has a commercial debugger for CUDA which we will evaluate shortly. 

6.4. LEOS - UPC 

6.4.1. Effort Required 
LEOS is under Subversion, on the Livermore Computing platforms.  At ~70K lines of code and ~200 files, 
there is a learning curve to understanding the basics of LEOS.  Fortunately reasonable documentation 
exists to get a quick overview of how the code works, and the data is organized in one large data 
structure.  The part of LEOS that would be affected by UPC was isolated in one package of LEOS, called 
LIP, which is the Livermore Interpolation Package.  LIP consists of ~50 files and its own test packages that 
are the standalone version of the interpolation package in the LEOS access library. 
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There were two challenges to the conversion.  The first challenge was augmenting the data structure in 
which the coefficient array resided.  This data structure consisted of all of the information for the 
interpolant.  As the coefficient data was calculated, the structure would then allocate memory within 
the data structure. 
 

LIP_interp 
      

 
LIP_Style setup_type Coefficient setup type 

  

 
char *xname 

Name of the first independent variable 

(LEOS:rho).  

 
integer Nx Number of x-grid values  

  

 
real8 *x  Pointer to array of x-grid values 

 

 
char *yname 

Name of the second independent variable 

(LEOS:T).  

 
integer Ny Number of y-grid values  

  

 
real8 *y  Pointer to array of y-grid values.  

 

 
char *fname Name of the function being interpolated 

 

 
real8 *fval 

Pointer to array of f-values on (x,y)-

grid 
 

 
real8 *dfdx Pointer to array of df/dx-values on this grid 

 
real8 *dfdy Pointer to array of df/dy-values on this grid 

 
real8 *twists Pointer to array of d(df/dx)/dy-values 

 

 
real8 *coeff Pointer to interpolation coefficient array 

 

 
LIP_meth int_type Interpolation type for coeff 

  

        Figure 6-1 LEOS Data Structure. 

After talking with the UPC experts from LBNL, and looking at the very few examples in literature, I (Evi) 
decided to leave the coeff array within the structure and make it a shared pointer, versus pulling coeff 
out of the structure, and having to recode a significant part of LEOS/LIP, which relied on coeff being 
within the LIP_interp struct.  Making that decision brought about another challenge, one I would have 
regardless of the implementation method – coeff and thus LIP_interp needs to be declared at the global 
level.  To get around that, I ensured that it was properly defined in a header file, and the header file was 
ubiquitous.  
 
As was the case with the CLOMP conversion, much of my time was spent checking and rechecking 
myself concerning how to handle the shared memory, how was this data really going to be distributed 
across the threads, and did I correctly have the coefficient at the global level.  I did not have confidence 
in myself, and had vague compiler errors that were not helpful.  Luckily, we had the connection with 
LBNL at some point during the process so I could sent them snippets of code and they were able to help 
with the compilation of LIP.  
 
Next, I had to convert a test problem to UPC, and I chose liptest.c, which tests the setup functions for 
LIP, building several cases of the coefficient array.  My initial foray through liptest.c did not pick up on 
the fact that liptest.c used a temporary coefficient array to build the permanent coefficient array in the 
Lip_interp structure.  I pulled the temporary coefficient up to global status and declared it to be a shared 
variable, finally getting the test problem to run. 
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Task Approx. 
Duration 

Notes 

Familiarization with code  - LIP (includes 
initial meetings with code author, and 
code team, sketching out a call tree and 
data usage chart to assist with 
comprehension, learning SourceForge and 
Subversion to gain access to LEOS/LIP) 

20 days 

 

 

 

 

 

 

 
 

Once I started asking questions about 
LEOS/LIP, realized that I was going to have 
to gain access to additional resources, learn 
to use SourceForge to get to 
documentation and the learn Subversion to 
get to the sourcecode.  
Additionally, since UPCC ships the code off-
site, LIP would either have to be reviewed 
and released (time-wise infeasible) or I 
would have to figure out the error in 
compiling the translator on-site – another 
to-do.  
After LBNL visit, worked through LEOS 
coding again to set up the correct non-local 
shared information, i.e. have shared 
information at the highest level, and got 
that version of LEOS/LIP to compile. 
 

Identification of variables to convert to 
shared memory variables  2 hours 

 

 

Conversion of variables to shared memory 
variables.  Movement of any local 
variables that must be shared to global 
declaration section 

8 hours Finally figured out how to allocate memory 
across the threads by looking at several 
sources including the book and a few other 
sites. Drew out the memory for LEOS, and 
documented it. 
 

Proper allocation of shared memory 
variables 

10 hours  

Conversion of for loops that must be 
parallelized to upc_forall loops 

8 hours 

 

Non-trivial – look at all loops for coeff and 
figure out how to augment for shared 
memory 
 

Debugging of basic compilation problems 5 days Compiler messages are vague and take time 
to figure out. 
 

Familiarization with code  - Liptest.c 5 days Took some time to figure out there was a 
temporary coefficient array that needed to 
be promoted and moved into shared 
memory, which required more thought and 
coding.  The rest of the UPC transition went 
quickly since I was already familiar with the 
syntax. 
 

Identification of variables to convert to 2 hours  
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Task Approx. 
Duration 

Notes 

shared memory variables  
Conversion of variables to shared memory 
variables.  Movement of any local 
variables that must be shared to global 
declaration section 

1 hour  

Proper allocation of shared memory 
variables 

1 hour  

Conversion of for loops that must be 
parallelized to upc_forall loops 

1 hour  

Debugging of basic compilation problems 1 hour 

 
 

 

Running several threaded problems 8 hours (and 
counting) 

Have run and compared against two test 
problems in repository: First one thread 
versus serial, then several threads against 
serial. 
 

Total 37 days  
Table 6-2 Work breakdown, UPC learning and code conversion effort, LEOS. 

6.4.2. Overall Lessons 
There is a learning curve with the application - LEOS/LIP, and there is a learning curve with UPC more 
than just adding C parallel directives.  Although initially there appeared to be a reasonable number of 
web sites and a book to learn about UPC, until you actually try to apply UPC to a real problem versus 
running some of the test problems, there is not much help out there – you are on your own to explore 
and learn. Visiting LBNL helped a bit with making progress.  The UPC Clomp section on Overall Lessons 
does an excellent job of summarizing many of the issues as does the breakdown above concerning 
where time was spent on the effort to port LEOS/LIP.  Fortunately for this problem, the coefficient array, 
although a part of a structure, was global to the source code via an existing header file so I did not have 
to permeate the code with its presence.  In the test case, for the temporary coefficient array, I had to 
think how to cleanly pull out the temporary array, then assign a local array per thread so as not to touch 
numerous functions with passing this shared array – non-trivial to do in UPC.  It took me a while to think 
through how to minimize damage to the existing infrastructure with the UPC caveats. 
 
Now I am trying to run with multiple threads, which need to be compiled in thus changing the Makefile 
and recompiling all of the source codes. I am having trouble with the compile, and have a vague error, 
so I need to try either google to find a similar error (no match), or send the error into the ticket system 
or LBNL contacts and wait for help. 

6.4.3. Debugging 
Debugging consists of printf and lots of swearing. Sometimes, you send snippets of code to LBNL, and 
they are able to help.  Occasionally, you google, and you actually get a hit – about 5% of the time.   

  



Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 27  October 12, 2010 
 

7. Results 

7.1. CLOMP – UPC 
The charts in this section are comparisons of OpenMP and UPC performance of the CLOMP code on the 
hera system for different input problems.  Each node of hera has 4 Quad-core Opteron 8356 2.3 GHz 
CPUs for a total of 16 cores per node, and 32 GB of memory.  All runs were performed on a dedicated, 
‘quiet’ node. 
 
OpenMP cases were compiled with the Intel 10.0 compilers with–O3 optimization.  UPC cases were 
translated to C using the Berkeley 2.10.2 compiler/translator, and the Intel 10.0 compilers were then 
used to compile the translated code.  All UPC cases used the PSHM (Process Shared Memory) GASNet 
layer for parallelization. 
 
Speedup figures provided are relative to the OpenMP serial reference case for the given input problem.  
In Figures 7-1 through 7-3, all OpenMP threads allocate their own memory.  This ‘intelligent allocation’ 
strategy optimizes NUMA memory access patterns and mimics the performance of the OpenMP 
memory affinity patch being developed by B. deSupinski, M. Schulz, and A. Baker at LLNL. 
 
Over a variety of problem sizes, the raw time to run parallel regions of the UPC port of CLOMP was 
faster than dynamic OpenMP scheduled loops but slower than manual or statically scheduled OpenMP 
loops when shared memory for the OpenMP cases was allocated by each worker thread.  Combined 
with the generally slower serial regions of the code under UPC, the present UPC port of CLOMP is 
significantly slower than an OpenMP port with an intelligent allocation strategy. 
 

 
Figure 7-1 Speedup on 16-way hera node relative to OpenMP serial reference case for 'Target' input. 

The ‘Target’ input case that was examined in Figure 7-1 is a small memory footprint problem (209k).  
There are 64 partitions and 100 zones per partition.  This translates to 64 independent linked lists with 
100 elements in each list. 
 
Performance of all cases is low relative to peak speedup of 16 and the ‘Bestcase’ OpenMP speedup of 
11.5.  Bestcase speedup provides an upper bound on speedup but does not have adequate barriers to 
ensure correct answers.  For this case and the cache-friendly input case (Figure 7-2), several OpenMP 
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environment variables were set in order to increase performance of the Static and Dynamic OpenMP 
cases, at the expense of the Manual case (and the Bestcase)9. 
 
Note that UPC performance is significantly worse than the serial reference case, as seen by a speedup 
value less than 1. 
 

 
Figure 7-2 Speedup on 16-way hera node relative to serial reference case for cache-friendly input. 

Figure 7-2 shows speedup for a very small memory footprint problem (6,656 bytes).  Speedup for all 
cases is again poor relative to the OpenMP Bestcase of 12.5.  For this problem, UPC does gain over the 
serial reference case, but still performs worse than the Static OpenMP case. 
 
 

                                                           
9
 These environment variables settings are:  KMP_BLOCKTIME=infinite, KMP_LIBRARY=turnaround, and 

KMP_AFFINITY=compact,0 
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Figure 7-3 Speedup on 16-way hera node relative to serial reference case for memory-bound input. 

Best results under UPC are seen with large-memory cases.  This can be attributed to the lower relative 
impact of the code that is inserted to do pointer arithmetic on shared variables, which has a greater 
relative impact on small-memory cases or cases with a high flop/memory access ratio. 
 
Figure 7-3 shows speedup for an input problem that is 328 MB in size.  The larger memory footprint is 
achieved by increasing the length of each linked list to 10,000 zones.  Speedup of all cases is closer to 
the Bestcase speedup of 14.8 than for smaller memory inputs.  Despite performing better, the UPC case 
still lags in performance relative to the Static and Manual OpenMP cases. 
 

 
Figure 7-4 Speedup on 16-way hera node relative to serial reference case for memory-bound input and single thread 
allocation for OpenMP cases. 

Figure 7-4 shows results for the same problem dimensions as Figure 7-3, but with a different allocation 
strategy for the linked lists in the OpenMP cases.  In this case, OpenMP memory allocation is not done in 
a parallel region, so only one thread is used to allocate linked list memory.  This allocation strategy 
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creates suboptimal memory access patterns on a NUMA system.  The UPC allocation strategy for the 
linked lists remains the same as in Figure 7-3 and is a call to upc_all_alloc(). 
 
 

 
Figure 7-5 Runtime for Barrier loop. 

As seen in Figure 7-5, UPC barriers are notably faster than OpenMP barriers for the compilers and 
platform tested. 
 
 

 
Figure 7-6 Runtime for calc_deposit() routine calls. 

The calc_deposit() function emulates an MPI data exchange but does not do any actual communication.  
There are a large number of shared memory accesses that occur in this routine.  Each shared memory 
access causes the UPC compiler to insert code.  As a result this function takes 35 to 36 times more time 
in UPC code than the same routine coded in straight C/OpenMP, regardless of the problem dimensions. 
 
There is a small amount of actual work in the original calc_deposit routine, and there are many function 
calls inserted.  The actual number of top-level functions that are inlined into the code is equivalent to: 
 
 13 + (3 * numParts) 
 
where numParts is the number of partitions, which is equivalent to the number of independent linked 
lists.  This accounts for the high number of code insertions and the poor performance under UPC. 
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Figure 7-7 Runtime for serial reference case, OpenMP versus UPC. 

Serial code performance under UPC was initially very poor due to use of the strict memory model.  This 
improved with use of the relaxed memory model, but was still significantly slower than the OpenMP 
case regardless of problem size.  The strict memory model inserts a number of additional barriers and 
function calls into the translated code.  See Appendix A for an example of inserted code. 
 
In Figure 7-7, the code insertion overhead shown for calc_deposit() in Figure 7-6 is apparent in the serial 
reference case.  For the ‘Target’ input problem, the UPC case takes 3.5 times longer to run than the 
serial case written in C (with OpenMP in other regions of the code). 

7.2. CLOMP - OpenCL 
The OpenCL port of the CLOMP benchmark did not result in very impressive performance.  In most 
cases, the OpenCL version was in fact slower than the serial version with no parallelization whatsoever.  
This was expected, however, since a great deal of buffer copies to/from the compute device were 
required.  Even a version which minimized these copies was not much better than the serial version, and 
in many cases worse.  It should be noted that no optimization steps were taken in the kernel code, 
which might have improved the speedup.  The parameters lending themselves to the best speedup 
increased the problem size, and especially the number of floating-point operations to be performed.  
This mitigated some of the inefficiencies associated with OpenCL overheads such as buffer copies and 
kernel invocations.   
 
Below are four different experiments measuring speedup relative to the serial (sequential) case.  Each 
experiment has a different input type used to characterize different performance metrics.  That is, 
different parameters were used with CLOMP in order to stress different parts of the system.  These were 
run on edgelet, a system with two six-core Intel Xeon 2.66 GHz Westmere CPUs, 48 GB RAM, and two 
NVIDIA Tesla M2050 GPU Compute Units per node.  The OpenCL cases were run on the GPU units, while 
the OpenMP (OMP) cases were run using the CPUs.   
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Figure 7-8  Speedup on 12-way edgelet node relative to serial reference case for target input. 

 
Figure 7-8 provides performance analysis for the “default” case, which uses the target input parameters.  
Performance was very poor for the OpenCL cases, due to the many iterations being performed and high 
overhead. 
 

 
Figure 7-9 Speedup on 12-way edgelet node relative to serial reference case for cache-friendly input. 

The cache-friendly version shown above in Figure 7-9 results in better performance for all cases.  The 
CPU-based OpenMP cases were given more data (floating point operations) to calculate, which resulted 
in more cache resident data.  The GPU-based OpenCL cases resulted in a two-times speedup over the 
serial case, also due to more floating point operations to be performed per iteration.  We suspect that 
the dynamic OpenMP case performs better than the other OpenMP cases for this input because of load 
imbalances created by the thread count of 12, which is not a power of 2.  The load across CPUs is 
therefore not evenly distributed, and the dynamic OpenMP case alleviates this issue with load balancing. 
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Figure 7-10 Speedup on 12-way edgelet node relative to serial reference case for memory-bound input. 

The memory-bound input shown in Figure 7-10 consists of larger input data sizes to be operated on 
(more zones per partition).  For the CPU tests, performance was worse than in the cache-friendly case, 
but worse than the target case.  The additional data allowed more processing to be done in parallel, but 
still did not match the more flops-intensive case.  The GPU tests performed very poorly, similar to the 
target case.   
 

 
Figure 7-11 Speedup on 12-way edgelet node relative to serial reference case for flops-bound input. 

The flops-intensive case shown in Figure 7-11 increases the amount of floating point operations per 
iteration by a factor of 10 over the cache-friendly case, also resulting in an overall decrease in iterations 
(since the time scale is not altered).  The CPU cases are all comparable, and finally the GPU cases show 
significant speedup.  This is due to the overhead of OpenCL and GPU memory buffers being mitigated by 
the sheer amount of computation to be done in each iteration.  The raw floating point capability of the 
GPU in this case is clearly demonstrated.   

7.3. CLOMP - Cuda 



Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 34  October 12, 2010 
 

At this time, we are still in the process of converting code, and will continue to try to get the code 
compiled and debugged. As this was a learning process, we accomplished that task, and learned about 
CUDA and programming for a GPU. We have developed several guides, including a guide on tutorials 
available and a journal on how to compile/run CUDA. 

7.4. LEOS - UPC 
UPC cases were translated to C using the Berkeley 2.10.2 compiler/translator, and the gcc 4.3.2 
compilers were then used to compile the translated code.  All UPC cases used the SMP (pthreads) 
GASNet layer for parallelization. 
 
Currently, timing is the only concrete result I(Evi) can report. As the problem size increases, I would like 
to find a way to report memory size per thread to verify distribution of the coefficient array.   
 

Compiler Liptest 1 Liptest4 

gcc elapsed time 0.080000 elapsed time 0.060000 
upcc elapsed time 0.080000 elapsed time 0.040000 

 
I am surprised to see that the upcc compiler is faster than the gcc compiler for the Liptest4 case.   
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8. Code Maintenance and Development Environment Requirements 

8.1. UPC 

8.1.1. Application Team Requirements 
In this section we describe what is needed in order to maintain the ported code, from an application 
developer’s perspective, that was not required prior to the port, and separate from the items 
mentioned in Sections 8.1.2 and 8.1.3. 
 
The primary requirement for code that has been ported to UPC is that application developers learn UPC 
and maintain familiarity with it.  In order to make best use of UPC, a programmer must understand the 
problem data well enough to make decisions about how to divide it amongst all the threads in a way 
that maximizes data locality.  As mentioned previously, we found aspects of the memory management 
concepts of UPC difficult to learn.  This will likely be a challenge for application development teams as 
well. 
 
Mixing UPC and MPI is a paradigm shift in parallel programming.  Two separate modes of parallelism are 
both alive from program launch to program exit.  Learning how to properly utilize both UPC and MPI 
without introducing conflicts and bugs will present another learning challenge to application developers.   
 
Developers will likely require LLNL-specific UPC documentation along with support from an on-site UPC 
expert as they acquire the skills to program mixed MPI/UPC code. 

8.1.2. GASNet (Global Address Space Network)  
As discussed in Section 3.1.3, the GASNet is the layer that allows UPC compiled code to manipulate 
shared variables.  It provides an API to compiled code and then communicates over the target network.  
This network could be pthreads, PSHM (process shared memory), or any of a number of network 
protocols such as Infiniband VAPI. 
 
Multiple GASNets may have to be installed and supported in a production environment in order to 
provide flexibility.  From a support perspective, it would be best to have as few GASNets installed as 
possible.  In addition to supporting multiple installs, staff may have to devote time to isolating bugs in 
the GASNet layers as they arise. 
 
The most likely scenario for mixing UPC and MPI in LLNL codes is to have UPC provide on-node 
parallelism and MPI provide off-node parallelism.  If this model is followed, only on-node GASNet layers 
need to be installed.  This would restrict the GASNets to PSHM and SMP (pthreads) and eliminates the 
problem of possible network contention between MPI and UPC. 

8.1.3. Development Environment 

8.1.3.1. Compiler and Translator 
Building and maintaining UPC consists of installing a compiler, translator, and include files that must be 
accessible to the user.  Additionally, there are a number of options available to the user regarding which 
underlying networking protocol can/should be built to optimally use the platform.  The system then 
needs to be verified, ensuring that it has properly linked the compiler with the translator, and that the 
translator that exists at the LBNL web site will not be inadvertently used.  A maintenance headache can 
arise if multiple versions of the compiler are built and maintained.  Our advice is to settle on one or two 
versions per platform to minimize maintenance and developer choices.  
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The more pressing need is for expertise in UPC.  As was mentioned in the above use case studies, it is 
non-trivial to gain expertise in UPC. The support infrastructure is limited which means enhancing the 
one we have developed and practicing with more use cases. Unlike the GPU community, there is no UPC 
user group to bounce questions off of or to get ideas from to assist with design or debugging, so you will 
be building your community on your own. 

8.1.3.2. Debuggers 
At present there is no debugger support for a current version of UPC.  This will have to change if UPC is 
to be used at scale for LLNL applications.  We have a medium-priority request filed with the TotalView 
team to support a current UPC.  Ongoing support will involve testing new releases of TotalView and UPC 
to ensure nothing breaks, along with supporting bugs that users encounter while debugging UPC 
applications. 

8.1.3.3. Performance Tools 
There are several performance tools available for UPC from the University of Florida, such as the Parallel 
Performance Wizard (PPW).  We did not test these tools during the course of this study.  Basic support 
would include building and maintaining these tools and providing basic documentation on how to access 
and use them.   Additional support would include responding to bug requests related to the tools, and 
providing expertise in the tools at user request. 
 
To understand performance issues and bottlenecks in the CLOMP code, I (Charles) examined the 
translated code and compared it to the original serial C code.  No additional tools are required beyond 
the default compiler and translator to generate and examine translated code. 
 
A major cause of slow UPC code performance is excessive function calls and extra code inserted by the 
translator.  Each reference to a shared memory pointer variable inserts a nontrivial amount of code.  See 
Sections 6.1.2 and 7.1 as well as Appendix A for further discussion. 

8.2. OpenCL 

8.2.1. Application Team Requirements 
Developers wishing to learn and/or use OpenCL have a variety of resources available to them.  First and 
foremost, the Khronos group maintains the OpenCL specification and has materials available on their 
web site: http://www.khronos.org/opencl/.  Additionally, there are presentations available from recent 
conferences, and from NVIDIA and AMD, on their respective web sites.  There is also a book on OpenCL, 
entitled The OpenCL Programming Book.  Information is available from the web site: 
http://www.fixstars.com/en/company/books/opencl/.   
 
No official membership to any group or forum is required.  However, depending on the hardware target 
platform(s), it would be wise to follow the forums and web sites of the vendor supplying the 
implementation.  This will allow any device-specific idiosyncrasies or bugs to be more easily located and 
explained.  Otherwise, the open nature of the platform allows for a variety of perspectives and 
resources, and no single source of information may be the only one needed.  It is recommended that 
teams communicate with each other and other users tackling similar problems using OpenCL. 
  

http://www.khronos.org/opencl/
http://www.fixstars.com/en/company/books/opencl/


Getting to Exascale:  Applying Novel Parallel Programming Models to Lab Applications 

Page 37  October 12, 2010 
 

8.2.2. Development Environment and Compliers 
OpenCL is a specification rather than a specific compiler/tool/platform.  Therefore, any device or 
hardware platform may support the specification, but this requires an implementation that conforms to 
it.   
 
Therefore, the development environment must be supported by an OpenCL implementation.  The 
availability of this depends on the hardware and operating system used.  That is, given a set of 
hardware, it must be determined whether the OpenCL prerequisite software has been released for such 
a platform.  This depends on the hardware vendor, as the implementation must be customized for their 
hardware.  This is different from the GNU toolchain for instance, which is supported across a variety of 
hardware platforms.   
 
Currently, Apple, AMD, IBM, and NVIDIA have OpenCL implementations, with Intel promising a release 
“soon.”  So, while support depends on vendor implementation, most of the major ones have already 
released working versions.   
 
In the case of the OpenCL version of CLOMP discussed in this paper, the Apple and NVIDIA 
implementations were used.  The Apple implementation was used on a workstation to initially develop 
the code (and basic examples).  No support at all is required, since an implementation ships natively 
with the newest Mac OS X 10.6.  However, for the “production” version, the NVIDIA implementation 
was used, since NVIDIA GPUs were the hardware target.  The software was pre-installed on the edgelet 
cluster, and includes the CUDA Toolkit and Developer Drivers.   

8.2.3. Debuggers 
The gDEBugger CL tool is a new one, which enables the debugging of OpenCL kernels.  It is currently free 
and multi-platform, but is not really meant for an HPC environment.  Since the GPUs used for this paper 
were accessed remotely, this tool is only minimally (if at all) useful.   
 
The ATI Stream SDK supports debugging OpenCL kernels, but only in the x86 CPU case, and only using 
their platform implementation.  Again, this is not useful for the environment used in this paper, since 
NVIDIA GPUs were used.   
 
NVIDIA Parallel Nsight is a Visual Studio plugin that allows the debugging and profiling of OpenCL 
kernels, as well as CUDA (see next section).  However, this is a Windows-only solution and therefore not 
useful in this case.   

8.2.4. Performance Tools 
The ATI Stream SDK includes tools to perform profiling and performance analysis of OpenCL programs.  
NVIDIA Parallel Nsight (mentioned above) also supports profiling.  However, both of these tools are 
Windows-only and therefore not useful in this case.  The NVIDIA Visual Profiler holds some promise, 
since it is cross-platform.  However, it is still only suitable for a desktop setup, and not intended for 
cluster users. 

8.3. Cuda 

8.3.1. Application Team Requirements 
As was mentioned in an earlier section, the NVIDIA Developer’s Zone, found at 
http://developer.nvidia.com/object/gpucomputing.html, keeps tabs on the latest developments 
regarding CUDA and CUDA downloads and documentation. Forums, workshops, the latest news, blogs, 

http://developer.nvidia.com/object/gpucomputing.html
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etc. are available, and you can register for a GPU Computing registered developer account which will 
give you up-to-the-minute information on NVIDIA’s releases. This social networking capability allows an 
application developer access to and continuous feed of the latest information in a streamlined fashion, 
and the developer can filter information, passing toolkit updates to LC as needed. I thought it was an 
impressive way to use current social media at whatever level the developer wanted to engage at – and it 
showed me that this product is heavily endorsed by the vendor and is becoming production ready. 

8.3.2. Development Environment and Compliers 
We are impressed with the on-line tools and the web site and social media available – it certainly made 
it easier for several of us to learn about the programming model and come up-to-speed relatively 
quickly.  I (Evi) had some minor issues with finding items, and the language has some idiosyncrasies, 
however all of them will be different, and that is part of the learning curve.   

8.3.3. Debuggers 
CUDA toolkit ships with CUDA.gdb debugger, and a profiler, along with the documentation to figure out 
how to run the debugger.  AllineaDDT has a commercial CUDA debugger  and Totalview is currently 
releasing their Beta version of their CUDA debugger.  With the NVIDIA product, as long as the toolkit is 
loaded, we will have access to the new debugger, we just have to verify it works.  With Allinea and 
Totalview, we need to maintain contact and collaborations with these companies.  Currently, we have 
active alliances with these two companies to develop and improve existing debugger products, so 
adding CUDA to the mix should be a smooth operation since CUDA is used by many outside the National 
Laboratories (unlike UPC which seems to have a small following).  

8.3.4. Performance Tools 
CUDA Toolkit ships with a Visual Profiler that appears to get reasonable results from talks heard at the 
GPU Technology Conference 2010. This profiler gives a good first guess at your program’s issues. Many 
scientists did suggest that stronger tools would be needed in the future to identify the more systemic 
issues with a program.  
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9. Conclusion 

A lack of tools such as debuggers made accurate effort estimation for the UPC port difficult.  We believe 
that the time we spent porting CLOMP to UPC was greater than the time an application developer would 
have spent on the same code, especially if he or she was already familiar with it.  However, the present 
nature of the UPC language requires that an entire application be modified if one small region is to be 
parallelized.  This implies that the time to parallelize a large code with UPC will always be longer than 
the time to parallelize with OpenMP. 
 
We recommend against the use of UPC as an alternative to OpenMP for intranode parallelism in LLNL 
scientific applications that use MPI for internode parallelism.  If an application has constructs that make 
the use of global arrays preferable to the existing code design, application teams may still choose to port 
to UPC.  However, if an application design would not benefit from a switch to global arrays, we believe 
that the complexity involved in the port and subsequent code maintenance does not justify the 
performance increase relative to OpenMP.  For a range of problem dimensions, parallel UPC code 
performance with the CLOMP code was worse than statically scheduled OpenMP parallelism, so long as 
an intelligent memory allocation strategy was used with OpenMP10.  We do not know what the outcome 
of additional tuning might be, and we cannot rule out the possibility that such tuning could ultimately 
give UPC code an advantage over OpenMP for CLOMP.  However, the large amount of code inserted by 
the Berkeley UPC translator for every UPC shared variable manipulation makes it seem unlikely that 
performance could be significantly better than OpenMP performance with memory affinity. 
 
Table 9-1 compares UPC to OpenMP across a number of factors. 
 

 OpenMP UPC 

Type API supported by most modern 
C/C++ and Fortran compilers. 

Language with compiler, translator, and 
GASNet layer that overlays C 
programming language. 
 

Parallel programming 
model 

Work sharing, mostly through 
parallelizing loops.  Shared 
variables are updated by 
different threads in independent 
loop iterations. 
 

Work sharing through parallelized for 
loops or thread-dependent execution 
paths.  Shared variables updated 
through independent loop iterations. 

Devices supported Runs over multiple cores on a 
single node. 

Flexible depending on GASNet layer.  
Can run over multiple cores on a single 
node, or across nodes by utilizing the 
system interconnect. 
 

Threading model Multithreading fork-join. All threads independently run entire 
program. 
 

Shared memory model Shared variables can be accessed 
by any thread (restricted to one 

Shared variables can be accessed from 
any thread of a run, which can extend 

                                                           
10

 A caveat: Determining behavior of applications at scale must at present be extrapolated from our intranode 
results.  Only intranode parallelism was examined in this study, and no MPI runs were conducted. 
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 OpenMP UPC 

node).  Variable declarations and 
allocations do not change. 

across nodes.  Shared variables have 
unique forms of declaration and 
allocation and must be global variables. 
 

Memory affinity No default concept of memory 
affinity.  Possible with affinity 
patch or by intelligent allocation. 
 

Memory affinity available through use of 
particular allocate statements. 

Performance Without memory affinity:  Fair 
With memory affinity:  Good 
Using static loop scheduling:  
Good 
Using dynamic loop scheduling:  
Fair 

Debug version:  Very Poor 
Strict memory consistency:  Poor 
Relaxed memory consistency:  Good 
Calculations with excessive shared 
pointer arithmetic:  Poor to Fair 
Memory-bound calculations:  Good 
 

Time to learn Low Low 
 

Time to master Medium High 
 

Time to port code Low High 
 

Time to debug Medium High (will likely go down once debugger 
is available) 
 

Support and 
documentation 

Very good Fair 

Robustness and stability Good Fair 
 

Table 9-1 UPC versus OpenMP. 

We did not get far enough with our CUDA port to directly compare results to our OpenCL results.  
However, recent developments in CUDA as evidenced at the GPU Conference in San Jose during the 
week of September 20 show that it is becoming more robust, is supported by multiple vendors, is being 
experimented with by the scientific community with good results, and will soon be able to be used with 
the x86-64 architecture. 
 
OpenCL proved to be a relatively straightforward model to use, once the verbosity of initialization and 
setup code was understood.  The lack of UNIX-based cluster debugging and profiling tools was 
troublesome, but not completely inhibiting, thanks to the use of extensive error checks during kernel 
setup.  Thanks to early multi-vendor adoption, there is a variety of information available about the 
standard, from beginning to advanced tutorials. 
 
However, since this is still a relatively new standard, the lack of implementations (Intel is notably absent) 
was severely limiting for cross GPU-CPU comparison, which OpenCL could facilitate.  All other major chip 
vendors have released an implementation.  Such a release from Intel is promised to be soon, and would 
allow CPU vs. GPU performance analysis, using the same code.  Additionally, it would facilitate an 
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OpenMP versus OpenCL performance analysis, both on the CPU, which would allow a true comparison 
of the two shared memory programming models. 
 
It is expected that the standard will continue to mature and be adopted.   Implementations will also 
become more bug-free and performance-minded as more users test and use them.  Therefore, this 
programming model holds promise for future systems with heterogeneous parallel architectures.   
 

 CUDA OpenCL 

Double-precision support Yes, but depends on device Yes, but depends on device and 
requires extension  

Devices supported NVIDIA GPUs only Multiple, with implementation 
Operating systems supported Windows, Linux, Mac OS Windows, Linux, Mac OS* 
Languages supported C, C++, Fortran, DirectCompute C, C++ 
Pointer support Yes, Fermi devices only No 
Recursion support Yes, Fermi devices only No 
Memory buffer flexibility Limited Extensive, especially with 1.1 
Documentation available Extensive Moderate 
Newest release version 3.1 1.1 
Printf support Yes, Fermi devices only Yes, but depends on device and 

requires extension 
Table 9-2 CUDA versus OpenCL feature comparison. 

*Requires existing implementation on this platform, but these exist for all three operating systems. 
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10. Next Steps 

We first propose that we conduct more interviews with code teams and with key LC staff.  The purpose 
of these interviews is to learn and document what these teams and staff will need to ensure a successful 
migration to exascale-suited programming models.  After completing the interviews, we will propose 
additional deliverables that address these needs.  It is critical that we ask the right questions in these 
interviews.  By determining how our interviewees currently make long-term decisions about their 
domain of expertise and then implement those decisions, we can create deliverables that directly aid 
them in their decision-making and implementation process. 
 
We propose that we prepare a comprehensive survey of novel models of parallelism that could be 
used for exascale computing.  In order to prepare this survey, we expect to do online research, talk and 
meet with key industry players, and talk and meet with staff at other DOE labs.  This survey will include: 
 

 Characteristics of the models 

 Their anticipated suitability to several types of LLNL scientific applications 

 An examination of the present state of each of these models 

 Our prediction for the state of these models in an exascale timeframe 

 A qualitative risk assessment of using each model 

 Recommendations for steps to take to mitigate risk with each model 

 Recommendations on overall approach to take 

 Implementation timeline with milestones 
 
Similar to the deliverables that will come out of our interview process, this survey will be a useful tool 
for both application teams and LC staff in preparing for these future models, planning future resource 
allocation, planning for migration to the models, and making decisions about what actions to take now. 
 
We propose porting an MPI application coded in C that has not already been parallelized with 
OpenMP to OpenMP, CUDA, and/or OpenCL.  Depending on the progress of our survey, we may also 
port the code to one or more additional to-be-identified models.  Performance of the ported application 
will be a primary study result.  We will also track and report on the time spent porting to each target 
coding model.  This finding will constitute a significant study result. 
 
We do not propose moving forward with studying UPC as an alternative to OpenMP for intranode 
parallelism.  We may identify a code such as LEOS that would benefit from a design shift to using global 
arrays.  If we do, this code would be a candidate for porting to UPC, and we may incorporate it into our 
study.  Our hypothesis is that porting to UPC/MPI would take considerably more time than porting to 
OpenCL/MPI, CUDA/MPI, or OpenMP/MPI.  This is because porting to UPC will require an examination 
and possible recode of every single function, whereas porting to CUDA, OpenCL, and OpenMP will only 
require modification to the routines that are to be parallelized. 
 
CUDA and OpenCL are fairly similar, with CUDA having more flexibility in language constructs and better 
support, while OpenCL is an open standard with more flexibility in target architectures.  In November 
PGI will be releasing a CUDA C compiler that will run CUDA code on an X86-64 CPU.  Intel has stated that 
they will release a version of OpenCL that runs on Intel CPUs late in calendar year 2010.  Once this is 
released, it will permit us to directly compare OpenCL to CUDA and OpenMP on a specific CPU 
architecture as opposed to a GPU-only architecture.  CUDA support is much more robust than OpenCL 
support.  Allinea DDT and Totalview support debugging of CUDA applications.  This would be a major 
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reason to prefer CUDA over OpenCL for a large application port.  However, CUDA is an NVIDIA product.  
OpenCL is an open standard language and for this reason should not be ruled out. 
 
To stay current on the differences between CUDA and OpenCL, we propose devoting effort to an 
ongoing analysis of feature improvement in both languages.  The deliverable associated with this will 
be a feature comparison between CUDA and OpenCL , with the anticipated audience being  application 
developers. 
 
We will be able to prepare a timeline and resource requirements for the above deliverables once we 
confirm interest in each of them from our stakeholders. 
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Appendix A. UPC Translator Code Insertion 

The UPC translator works by translating UPC code into standard C and inserting it in place of the UPC 
code so that it can be compiled with a normal C compiler.  A call to the function below (or a similar 
function depending on the specifics of the variable type) is inserted by the Berkeley UPC translator once 
for every shared pointer modification.  A similar call is inserted for every shared pointer access 
independent of modification. 
 
Note that if the strict memory model is in use, the isstrict variable below will evaluate to nonzero, and a 
number of additional functions are called as a result. 
 
__attribute__((__always_inline__)) static inline 
void 
_upcr_put_pshared(upcr_pshared_ptr_t dest, ptrdiff_t destoffset, const void *src, 
size_t nbytes, int isstrict ) 
{ 
     
    static char _bupc_dummy_PASS_GAS = (char)sizeof(_bupc_dummy_PASS_GAS); 
     
    upcri_local_t local = upcri_thread2local[upcr_threadof_pshared(dest)]; 
     
    (dest); 
     
    ((void)0); 
     
    if (local) do { 
        { 
            if (isstrict) gasneti_local_wmb(); 
            ((void)0); 
            do { 
                switch(nbytes) { 
                    case 0: break; 
                    case 1: *((gasnete_anytype8_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =  
  *((gasnete_anytype8_t *)(src)); 
                    break; 
                    case 2: *((gasnete_anytype16_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =  
  *((gasnete_anytype16_t *)(src)); 
                    break; 
                    case 4: *((gasnete_anytype32_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =  
  *((gasnete_anytype32_t *)(src)); 
                    break; 
                    case 8: *((gasnete_anytype64_t *)(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)))) =  
  *((gasnete_anytype64_t *)(src)); 
                    break; 
                    default: memcpy(((void *)(local + upcr_addrfield_pshared(dest) + destoffset)), src, nbytes); 
                     
                } 
                 
            } 
            while(0); 
            if (isstrict) _gasneti_local_mb(); 
             
        } 
        ; 
         
    } 
    while (0); 
    else do { 
        { 
            if (isstrict) gasneti_local_wmb(); 
            _gasnet_put(upcri_pshared_nodeof(dest),_upcri_pshared_to_remote_off(dest, destoffset ),(void *)src,nbytes ); 
            if (isstrict) _gasneti_local_rmb(); 
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        } 
        ; 
         
    } 
    while (0); 
     
     
} 
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Appendix B. Exascale Computing Programming Models 

 
Two programming models are currently being proposed for exascale computing.  The first is the hybrid 
model, in which MPI is used for inter-node programming and something else for intranode 
programming.  The second is the unified model, in which a single notation is used for both inter- and 
intranode programming.  For our study, the CLOMP code represented the hybrid model, and LEOS 
represented the unified model.  The two are explained more below. 
 

1. Hybrid/evolutionary: MPI + _______? 
      Intranode options 

 OpenMP 
 would require extensions to support accelerator 

programming 
 e.g., similar to directives from PGI, CAPS 
   may require the introduction of locality-oriented concepts 
   these efforts are already underway as part of OpenMP 3.0 

 PGAS languages 
  already support a notion of locality in a shared namespace 
  UPC/CAF would need to relax strictly SPMD execution 

model 
 Sequoia: supports a strong notion of vertical locality 
 CUDA/OpenCL: Could be a lower level than ideal for an end user 

 
2. Unified/holistic: _________? 

      (a single notation for inter- and intra-node programming) 
 traditional PGAS languages: UPC, CAF, Titanium 

   • would likely require extensions to handle nested parallelism, 
 vertical locality 

 HPCS languages: Chapel, X10, Fortress(?) 
  designed with locality and post-SPMD parallelism in mind 
 other candidates: Charm++, Global Arrays, ParalleX,  
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Appendix C. Links, Tutorials, Places to Go to Learn More 

Throughout our interdependent journeys to learn about UPC, CUDA ad OpenCL, we kept track of the 
sources for learning that are available via books and on-line. Below are collections of our sources. 

C.i. UPC Learning Experience 
 
Research for UPC is being done at a number of different Academic sites, with different spins:  

UPC@GWU 
The UPC working group at the High Performance Computing Lab (HPCL) , George Washington 
University (GWU) is involved in a number of efforts: UPC specification, UPC testing strategies, 
UPC documentation, testing suites, UPC benchmarking, and UPC collective and Parallel I/O 
specification.  

 
 Berkeley UPC  

The goal of the UPC effort at LBL and UC Berkely is to build portable, high performance 
implementations of UPC for large-scale multiprocessors, PC clusters, and clusters of shared 
memory multiprocessors. There are three major components to this effort: lightweight 
communication, compilation techniques for explicitly parallel languages, application 
benchmarks.  

 
 UPC@MTU 

Michigan Tech University (MTU) projects include the recent release of the MuPC run time 
system for UPC as well as collective specification development, memory model research, 
programmability studies, and test suite development.  

 
 GCC UPC 

The GCC UPC toolset provides a compilation and execution environment for programs written in 
the UPC. The GCC UPC compiler extends the capabilities of the GNU GCC compiler. The GCC UPC 
compiler is implemented as a C Language dialect translator, in a fashion similar to the 
implementation of the GNU Objective C compiler.  

 
 UPC@Florida 

Researchers at the University of Florida are currently involved in the research and development 
of a next-generation performance analysis tool supporting UPC. This tool will facilitate users in 
identifying bottlenecks in their programs and will serve as a testbed for advanced analysis 
techniques aimed at increasing programmer productivity.  

 

 

  

http://upc.gwu.edu/
http://hpc.gwu.edu/
http://www.gwu.edu/
http://upc.nersc.gov/
http://www.upc.mtu.edu/
http://www.intrepid.com/upc/
http://www.hcs.ufl.edu/upc/
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1. Book:   UPC: Distributed Shared-Memory Programming (Hardcover) 

ISBN-13 978 0-471-22048-0 (cloth) 
ISBN-10 0-471-22048-5 (cloth) 

 
 Tarek El-Ghazawi (Author), William Carlson (Author), Thomas Sterling (Author), 
Katherine Yelick (Author) Price: $120.00  
 

2. http://upc.lbl.gov/- Berkeley UPC - Unified Parallel C - (A joint project of LBNL and UC Berkeley) –  

a. This web site talks about the project from the UCB/LBNL perspective, and gave me 

names of people at LBNL/UCB to begin to pester, like Paul Hargrove.  

b. The Downloads tab is where I got the downloadable version (plus the README files to 

tell me what to do) that I am built and am currently running on Yana, and it is where I 

figured out about the translator 

c. I did not find this to be a helpful website – I probably should have joined their user 

groups – that might have helped.  

d. Under Publications tab, there are a few posters and talks that were initially helpful, 

however, I thought the book did a better job.  

3. http://upc.lbl.gov/docs/system/index.html 

a. I cannot remember how I got to this documentation – probably by pestering Paul 

Hargrove – this was useful in describing the layers of UPC – and how they fit together.  

4. http://upc.gwu.edu/ 

a. This is the UPC web site at George Washington University –  

i. I like this website a little better then the UCBerkeley website. 

ii. http://upc.gwu.edu/documentation.html 

1. UPC Language Specification (V 1.2) 

2. UPC Manual – used the book more than this manual 

iii. http://www.upc.mtu.edu/tutorials.html - going onto the Michigan Tech 

website, you will find some example problems. 

iv. http://www.gwu.edu/~upc/download.html - Testing Suites - I have yet to try 

these on the compiler I built – it would certainly be worth it to try them. 

http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt#reader-link
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=William%20%20Carlson
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Thomas%20Sterling
http://www.amazon.com/s/ref=ntt_athr_dp_sr_4?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Katherine%20%20Yelick
http://upc.lbl.gov/-
http://upc.lbl.gov/docs/system/index.html
http://upc.gwu.edu/
http://upc.gwu.edu/documentation.html
http://www.upc.mtu.edu/tutorials.html
http://www.gwu.edu/~upc/download.html
http://www.amazon.com/gp/reader/0471220485/ref=sib_dp_pt
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1. The testing suite is intended to test the functionality of any 

implementation of the UPC compiler and allow the user to measure the 

degree of its conformance to the UPC standard. The suite should 

contain a set of portable test programs. These programs fall under 

either of the following categories: 

a.  Positive tests: These tests are to verify that UPC features work 

properly according to the syntax and semantics described in the 

UPC specifications. 

b. Negative tests: These tests are to determine the error detection 

capabilities of a UPC compiler implementation. 

i. GWU Unified Testing Suite(GUTS), September 2008  

ii. Unified UPC Test Suite 1.2.0-r1, June 2005  

iii. The GWU Testing Strategy 1.1, March 2003  

iv. The GWU Testing Suite 1.1, September 2004  

v. The GWU UPC-IO Testing Strategy 1.2.0-r1, June 2005  

vi. The GWU UPC-IO Test Suite 1.2.0-r1, June 2005  

vii. MuPC Test Suite, January 2003  

5. UPC Articles worth looking into: 

a. Hybrid Parallel Programming with MPI and Unified Parallel C, about to be published, 

James Dinan, P. Sadayappan (Ohio State); Pavan Balaji, Ewing Lusk, Rajeev Thakur 

(Argonne). Excellent paper, plus corresponding with authors. First real hybrid of 

MPI+UPC application with good results. mpiupc_cf10.pdf 

b. Performance Evaluation of MPI, UPC and OpenMP on Multicore Architectures, 

published Euro PVM/MPI 2009, Dami´an A. Mall´on1, Guillermo L. Taboada2, Carlos Teijeiro2, 

Juan Touri˜no, Basilio B. Fraguela2, Andr´es G´omez1, Ram´on Doallo2, and J. Carlos Mouri˜no. 

Excellent recent article on timings between these different approaches. Recent advances 

in parallel.pdf 

c. Execution Model of three parallel languages: OpenMP, UPC, CAF, published ISO press 

2005, Arni Marowka. Good article describing these three approaches, and the pros and 

cons. Scien001.PDF 

d. Unified Parallel C - UPC on HPCx, Ian Kirker and Adrian Jackson, January 14, 2008, HPCx 

Capability Computing. This document outlines the basic concepts of UPC, and explores 

what functionality is available on HPCx. It then goes on to analyze the performance of 

UPC against IBM's MPI and LAPI on HPCx. Both IBM's UPC offering, and an open-source 

(Berkeley) UPC compiler are evaluated. HPCxTR0709.pdf 

e. http://www.cug.org/1-conferences/CUG2010/pages/1-

program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-

10Tuesday/9B-Alam-slides.pdf - Evaluation of Productivity and Performance 

Characteristics of CCE, CAF and UPC Compilers, by Sadaf Alam, William Sawyer, Tim Stitt, 

Neil Stringfellow, and Adrian Tineo. Excellent, current article given at CUG 2010. 

f. http://www.prace-project.eu/documents/13_pgas_sa.pdf - Productivity Analysis of 

Integrated Compilers for PGAS Languages by Sadaf Alam at the PRACE (Partnership for 

http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.cug.org/1-conferences/CUG2010/pages/1-program/final_program/CUG10CD/CUG10_Proceedings/pages/authors/06-10Tuesday/9B-Alam-slides.pdf
http://www.prace-project.eu/documents/13_pgas_sa.pdf
http://www.prace-project.eu/
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Advanced Computing in Europe) Workshop “New Languages & Future Technology 

Prototypes”, March 1-2, 2010.  

C.ii. CUDA Learning Experience 

Currently, two books exist – the first as a textbook, and the other has a good sampling of examples: 

1. Programming Massively Parallel Processors: A Hands-on Approach, by David B. Kirk  and Wen-
mei W. Hwu 

 
 

2. Cuda by Example by by Jason Sanders and Edward Kandrot 
 

 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=David%20B.%20Kirk
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Wen-mei%20W.%20Hwu
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Wen-mei%20W.%20Hwu
http://www.amazon.com/gp/reader/0123814723/ref=sib_dp_pt
http://www.amazon.com/gp/reader/0131387685/ref=sib_dp_pt
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CUDA has online courses to help you get started programming or teaching CUDA as well as links to 
Universities teaching CUDA.  

For a beginner, start with Introductory CUDA Technical Training Courses which give an overview of the 
CUDA programming model and basic concepts.  Try to register for one of Nvidia's CUDA webinars as 
well. Although there are previously recorded webinars available on Nvidia's website, live webinars are a 
good place to ask someone at Nvidia questions.  

http://developer.nvidia.com/object/cuda_training.html 
CUDA University is organized into three sections to get you started  
Introductory CUDA Technical Training Courses  
CUDA University Courses  
CUDA Seminars and Tutorials  

C.ii.a. Introductory CUDA Technical Training Courses 

 Volume I: Introduction to CUDA Programming (94 pages long) 
 Exercises (for Linux and Mac)   (Tar file) 
 Visual Studio Exercises (for Windows)  
 Instructions for Exercises (12 pages long) 

 Volume II: CUDA Case Studies (Real examples with coding and performance, etc.) 
 Computational Finance in CUDA............................................................................1 

1. Black-Scholes pricing for European options ...............................................3 
2. MonteCarlo simulation for European options............................................16 

 Spectral Poisson Equation Solver ..........................................................................40 
 Parallel Reduction..................................................................................................63 

C.ii.b. CUDAcasts - Downloadable CUDA Training Podcasts  

 Introduction to GPU Computing  
 CUDA Programming Model Overview  
 CUDA Programming Basics - Part I  
 CUDA Programming Basics - Part II  

Additional GPU Computing Online Seminars 

 Introduction to MainConcept's CUDA H.264/AVC Encoder  

 Monitoring and Managing GPU Clusters with Bright Cluster Management  

 An Introduction to OpenCL™ Application Development with gDEBugger CL  

 Rapid Prototyping and Visualization with OpenCL Studio  

 GPU Computing using CUDA C – An Introduction  

 GPU Computing using CUDA C – Advanced 1  

 GPU Computing using CUDA C - Advanced 2  

 GPU Computing using OpenCL- An Introduction  

 GPU Computing using OpenCL Advanced 1  

 Parallel Nsight - An Introduction and Overview  

 Thrust, A C++ Standard Template Library for CUDA C - An Introduction 

http://developer.nvidia.com/object/cuda_training.html
http://*developer.nvidia.com/object/cuda_training.html#1
http://*developer.nvidia.com/object/cuda_training.html#2
http://*developer.nvidia.com/object/cuda_training.html#2
http://*www.*nvidia.com/docs/IO/47904/VolumeI.pdf
http://*www.*nvidia.com/content/cudazone/download/Exercises.tar
http://*www.*nvidia.com/content/cudazone/download/Exercises.zip
http://*www.*nvidia.com/content/cudazone/download/Exercise_Instructions.pdf
http://*www.*nvidia.com/docs/IO/47904/VolumeII.pdf
http://*http.download.nvidia.com/developer/cuda/podcasts/Introduction_to_GPU_Computing.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Model_Overview.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Basics_-_Part_I.m4v
http://*http.download.nvidia.com/developer/cuda/podcasts/CUDA_Programming_Basics_-_Part_II.m4v
http://*developer.nvidia.com/object/gpu_computing_online.html
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C.ii.c. CUDA University Courses 

University of Illinois : ECE 498AL 

Taught by Professor Wen-mei W. Hwu and David Kirk, NVIDIA Chief Scientist.  

o Introduction to GPU Computing (60.2 MB)  
o CUDA Programming Model (75.3 MB)  
o CUDA API (32.4 MB)  
o Simple Matrix Multiplication in CUDA (46.0 MB)  
o CUDA Memory Model (109 MB)  
o Shared Memory Matrix Multiplication (81.4 MB)  
o Additional CUDA API Features (22.4 MB)  
o Useful Information on CUDA Tools (15.7 MB)  
o Threading Hardware (140 MB)  
o Memory Hardware (85.8 MB)  
o Memory Bank Conflicts (115 MB)  
o Parallel Thread Execution (32.6 MB)  
o Control Flow (96.6 MB)  
o Precision (137 MB)  

These classes are each downloadable CUDAcasts with video pre-scaled to be compatible 
with major players.  

All PowerPoint class presentations can be found on the course syllabus: ECE 498AL  

Stanford University: CS193G  
Taught by Jared Hoberock and David Tarjan 

o Introduction to Massively Parallel Computing  
o GPU History and CUDA Programming Basics  
o CUDA Treads and Atomics  
o CUDA Memories  
o Performance Considerations  
o Parallel Patterns I  
o Parallel Patterns II  
o Introduction to Thrust  
o Sparse Matrix-Vector Multiplication on Throughput-Oriented Processors  
o PDE Solvers  
o The Fermi Architecture  
o Ray Tracing Case Study  
o Future of Throughput  
o Path Planning Case Study  
o Optimizing GPU Performance  
o Final lecture TBD  

http://*courses.ece.illinois.edu/ece498/al/Syllabus.html
http://*www.*ece.uiuc.edu/people/profile.asp?w-hwu
http://*www.*nvidia.com/object/bio_kirk.html
http://*www.*nvidia.com/content/cudazone/cudacasts/Introduction%20to%20GPU%20Computing.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20Programming%20Model.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20API.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Simple%20Matrix%20Multiplication%20in%20CUDA.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/CUDA%20Memory%20Model.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Shared%20Memory%20Matrix%20Multiplication.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Additional%20CUDA%20API%20Features.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Useful%20Information%20on%20CUDA%20Tools.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Threading%20Hardware.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Memory%20Hardware.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Memory%20Bank%20Conflicts.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Parallel%20Thread%20Execution.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Control%20Flow.m4v
http://*www.*nvidia.com/content/cudazone/cudacasts/Precision.m4v
http://*courses.ece.illinois.edu/ece498/al/Syllabus.html
http://*code.google.com/p/stanford-cs193g-sp2010/
mailto:jaredhoberock@gmail.com
mailto:tar.cs193g@gmail.com
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_1/introduction_to_massively_parallel_computing.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_2/gpu_history_and_cuda_programming_basics.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_3/cuda_threads_and_atomics.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_4/cuda_memories.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_5/performance_considerations.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_6/parallel_patterns_1.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_7/parallel_patterns_2.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_8/introduction_to_thrust.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_9/sparse_matrix_vector_multiplication_on_throughput_oriented_processors.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_10/solving_pdes_with_cuda.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_11/the_fermi_architecture.pdf
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/lectures/lecture_15/optimizing_gpu_performance.pdf
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PowerPoint versions of these presentations can be found here.  
CS193G Assignments 
CS193G Tutorials 

UC Davis: EE171, Parallel Computer Architecture 

Taught by John Owens, Associate Professor  

o Course Materials  

Universities teaching CUDA where you can apply to enroll or register for courses.  

C.ii.d. CUDA Seminars and Tutorials 

 GPU Technology Conference: search for recordings via the interactive session calendar  
 SC09  

o NVIDIA GPU Computing Theatre  
o SC09 Tutorial: High Performance Computing with CUDA  

 SC08 Tutorial: High Performance Computing with CUDA  
 SC07 Tutorial: High Performance Computing with CUDA  
 NVISION 08 Tutorials  

o Getting Started with CUDA (covers CUDA programming model, basics of CUDA 
programming, and BLAS and FFT libraries)  

o Advanced CUDA Training (covers 10-series architecture and optimization techniques 
using particle simulation and finite difference case studies)  

o All presentations from NVISION 08  
 ISC 2008 Case Study: Computational Fluid Dynamics (CFD)  

C.ii.e. CUDA Consultants and Trainings  

 Acceleware Professional Services  
 Stone Ridge Technology  
 Wipro Global Consultancy Services  

Dr. Dobb's Article Series  

 CUDA, Supercomputing for the Masses: Part 1  
CUDA lets you work with familiar programming concepts while developing software that can run 
on a GPU  

 CUDA, Supercomputing for the Masses: Part 2  
A first kernel  

 CUDA, Supercomputing for the Masses: Part 3  
Error handling and global memory performance limitations  

 CUDA, Supercomputing for the Masses: Part 4  
Understanding and using shared memory (1)  

 CUDA, Supercomputing for the Masses: Part 5  
Understanding and using shared memory (2)  

http://*code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/assignments/
http://*stanford-cs193g-sp2010.googlecode.com/svn/trunk/tutorials/
https://*smartsite.ucdavis.edu:8443/portal/site/1707812c-4009-4d91-a80e-271bde5c8fac/page/de40f2cc-40d9-4b0f-a2d3-e8518bd0266a
http://*www.*ece.ucdavis.edu/~jowens/
http://*www.*nvidia.com/object/cudau_ucdavis
http://*developer.nvidia.com/object/cuda_courses.html
https://*nvidiagtc.wingateweb.com/scheduler/schedule/eventDayView.jsp
http://*www.*nvidia.com/object/SC09_Theater.html
http://*gpgpu.org/index.php?s=supercomputing+2009
http://*gpgpu.org/sc2008
http://*www.*gpgpu.org/sc2007/
http://*www.*nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://*www.*nvidia.com/content/cudazone/download/Advanced_CUDA_Training_NVISION08.pdf
http://*developer.nvidia.com/object/nvision08-presentations.html
http://*developer.nvidia.com/admin/staging/IO/70081/ISC08_CFD.pdf
http://*www.*acceleware.com/default/index.cfm/professional-services/
http://*www.*stoneridgetechnology.com/services/visualcomputing.asp
http://*www.*wipro.com/
http://*www.*ddj.com/cpp/207200659
http://*www.*ddj.com/cpp/207402986
http://*www.*ddj.com/hpc-high-performance-computing/207603131
http://*www.*ddj.com/hpc-high-performance-computing/208401741
http://*www.*ddj.com/hpc-high-performance-computing/208801731
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 CUDA, Supercomputing for the Masses: Part 6  
Global memory and the CUDA profiler  

 CUDA, Supercomputing for the Masses: Part 7  
Double the fun with next-generation CUDA hardware  

 CUDA, Supercomputing for the Masses: Part 8  
Using libraries with CUDA  

 CUDA, Supercomputing for the Masses: Part 9  
Extending High-level Languages with CUDA  

 CUDA, Supercomputing for the Masses: Part 10  
CUDPP, a powerful data-parallel CUDA library  

 CUDA, Supercomputing for the Masses: Part 11  
Revisiting CUDA memory spaces  

 CUDA, Supercomputing for the Masses: Part 12  
CUDA 2.2 changes the data movement paradigm  

 CUDA, Supercomputing for the Masses: Part 13  
Using texture memory in CUDA  

 CUDA, Supercomputing for the Masses: Part 14  
Debugging CUDA and using CUDA-GDB  

 CUDA, Supercomputing for the Masses: Part 15  
Using Pixel Buffer Objects with CUDA and OpenGL 

 

C.iii. OpenCL Learning Experience 
 
Excellent GPU Computing web site:   http://www.gpucomputing.net/ 
OpenCL tutorial from this site: http://www.gpucomputing.net/?q=node/128 

 Video tutorial is especially useful 

 Author has extensive CUDA experience and is able to compare and contrast OpenCL with CUDA 

 Slides are also available 
 
There is also an OpenCL book that has been published:   
http://www.fixstars.com/en/company/books/opencl/ 
The OpenCL Programming Book, By Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, and Akihiro 
Asahara 
 
 

http://*www.*ddj.com/cpp/209601096
http://*www.*ddj.com/hpc-high-performance-computing/210102115
http://*www.*ddj.com/hpc-high-performance-computing/210602684
http://*www.*drdobbs.com/hpc-high-performance-computing/211800683
http://*www.*ddj.com/architect/212903437
http://*www.*ddj.com/hpc-high-performance-computing/215900921
http://*www.*ddj.com/architect/217500110
http://*www.*ddj.com/hpc-high-performance-computing/218100902
http://*www.*drdobbs.com/hpc-high-performance-computing/220601124
http://*www.*drdobbs.com/hpc-high-performance-computing/220601124
http://www.gpucomputing.net/
http://www.gpucomputing.net/?q=node/128
http://www.fixstars.com/en/company/books/opencl/
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 Amazon review indicates that the majority of information from this can be found on the web, 
however 

 
A C++ oriented tutorial is available from AMD’s developer site: 
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx 

 Not very thorough and C++ only 
 
GPU Technology Conference 2009 Materials 
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm 
Specifically, OpenCL introductory material: 
Slides: http://www.nvidia.com/content/GTC/documents/1409_GTC09.pdf 
Video: http://www.nvidia.com/content/GTC/videos/GTC09-1409.mp4 

 Good overview of Khronos group and OpenCL 

 A bit NVIDIA-heavy since the people presenting work there 
 
MacResearch Tutorials 
http://www.macresearch.org/opencl 

 Somewhat Apple-specific information, but good, thorough video tutorials 
 
Slides from PPAM 2009 Tutorial 
http://gpgpu.org/ppam2009 
http://gpgpu.org/wp/wp-content/uploads/2009/09/ 

 Scientific computing emphasis 

 “Clusters” portion of the presentation especially applicable to science codes 
 
Parallel Programming Tutorials Series, Part 9 
http://www.multicoreinfo.com/2009/08/parprog-part-9/ 

 Links to other resources 

 Includes tutorials for other technologies (pthreads, MPI, MapReduce, etc.) 

 Somewhat dated material (2008-2009) 
 
Apple Developer Resources (Reference Library) 

http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://www.nvidia.com/content/GTC/documents/1409_GTC09.pdf
http://www.nvidia.com/content/GTC/videos/GTC09-1409.mp4
http://www.macresearch.org/opencl
http://gpgpu.org/ppam2009
http://gpgpu.org/wp/wp-content/uploads/2009/09/
http://www.multicoreinfo.com/2009/08/parprog-part-9/
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http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgG
uide/Introduction/Introduction.html 

 Somewhat basic material, but good introduction 
 
NVIDIA GPU Computing Resources 
http://developer.nvidia.com/object/gpu_computing_online.html 

 Up-to-date and relevant material 

 Missed OpenCL webinars this past week    
 
AMD Stream SDK/OpenCL Resources 
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx 

 Lots of development examples and tutorials  

 Good documentation 

 Video Tutorials: 
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Page
s/default.aspx 

 
Khronos Group OpenCL Web Site 
http://www.khronos.org/registry/cl/ 

 Official API registry, has header files and API docs 
Khronos Group YouTube Videos (SIGGRAPH 2010) 
http://www.youtube.com/user/khronosgroup 
 
Supercomputing 2009 Tutorial 
www.multicoreinfo.com/2009/08/parprog-part-9  

 Very thorough tutorial by some of the best names in industry 

 Includes real application examples from real codes 
 
ENJ Tutorials 
http://enja.org/ 

 Somewhat beginner in nature but source code provided 
 
SIGGRAPH Asia 2009 Tutorial 
http://sa09.idav.ucdavis.edu/ 

 Good introductory tutorial  
 
DOE Talks 
Petascale computing on Sequoia 
https://hpcrd.lbl.gov/scidac09/talks/Seager-Sequoia4SciDACv1.pdf 
 
NVIDIA-Specific Notes (from CUDA Toolkit 3.1) 

 Make sure that the nvidia-specific CUDA toolkit path variables are set 

 MUST have a clGetPlatformIDs call before getting device(s) 

 MUST specify platform in context setup 
o From NVIDIA OpenCL Implementation Notes 3.1: 
o “clGetPlatformInfo and/or clGetDeviceIDs will fail with the CL_INVALID_PLATFORM 

error if platform is NULL.” 

http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/Performance/Conceptual/OpenCL_MacProgGuide/Introduction/Introduction.html
http://developer.nvidia.com/object/gpu_computing_online.html
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Pages/default.aspx
http://developer.amd.com/documentation/videos/OpenCLTechnicalOverviewVideoSeries/Pages/default.aspx
http://www.khronos.org/registry/cl/
http://www.youtube.com/user/khronosgroup
http://www.multicoreinfo.com/2009/08/parprog-part-9
http://enja.org/
http://sa09.idav.ucdavis.edu/
https://hpcrd.lbl.gov/scidac09/talks/Seager-Sequoia4SciDACv1.pdf
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Double-Precision Floating Point Support 
#pragma OPENCL EXTENSION cl_khr_fp64 : enable // use 64-bit fp  

 included in kernel (.cl) code 
 
 
 
 


